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Abstract

Recovering market beliefs, time preferences, and risk preferences unambiguously from

asset prices requires a subjective state space specification for the underlying market — an in-

put that is not observed prior to the recovery implementation. While different specifications

lead to respectively unique recovery results, these results are distinct and mutually incon-

sistent in general because each specification organizes and employs price information dif-

ferently. Consistency is achieved only when consolidating states that map one specification

to the other have identical marginal utilities and transition probabilities. Using option price

data, we demonstrate that recovery inconsistencies are both prevalent and significant. Our

findings indicate that a consistent recovery framework remains elusive.
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1 Introduction

Recovering market participants’ rational characteristics, such as risk and time preferences and

beliefs, from traded asset prices is an important yet challenging task due to a fundamental am-

biguity: even in a complete and frictionless financial market, different combinations of prefer-

ences and beliefs can be compatible with the same set of asset prices. Ross (2015)’s Recovery

Theorem addresses this challenge by identifying sufficient conditions under which an unam-

biguous (i.e., unique) recovery is possible. While conceptually elegant, the theorem’s practical

applicability hinges on whether these unique characteristics can be reliably obtained under the

identified conditions.

This paper examines the implementability of recovery from a consistency perspective, which

centers on a key observation. Because the underlying market’s state space, an essential input

to formulating and implementing the recovery, is unobserved prior to the recovery procedure

and yet highly consequential for its results. The recovery consistency question asks whether

the uniquely recovered characteristics under different subjective state space specifications are

reconcilable, given that they all pertain to the same underlying (true) market model. By linking

the specification input to the price information required to implement the recovery under that

specification, the consistency question translates into whether price information is lost when

moving from one specification to another. This connection underpins all findings of the paper.

We show that price information is almost surely distorted across different specifications, and

that significant distortion persists even between closely resembling specifications. This reveals a

prevalent, significant, and persistent recovery consistency problem. The issue applies to the im-

plementation of both the original Recovery Theorem setting and its extended versions, including

best-fit, continuous-setting, arbitrage-based, and generalized formulations, even in a friction-

less market with perfect price data. The reason is that, in all cases, the state space specification

remains an unobserved yet consequential input to the recovery process. Through qualitative,

quantitative, and empirical analyses, we offer new insights into the practical limits of the recov-

ery framework.

Qualitatively, we derive a necessary and sufficient condition for recovery consistency across

different subjective state space specifications. This condition requires that the underlying char-

acteristics (marginal utilities and transition probabilities) be identical for any states that differ-

entiate the subjective specifications. Intuitively, consistency is preserved only when switching
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between specifications involves states with indistinguishable fundamentals, thereby preventing

information distortion. This condition is highly restrictive, indicating that a consistent recovery

framework remains elusive.

Quantitatively, we employ a perturbative analysis to analytically quantify the recovery con-

sistency issue. A key tradeoff governs the choice of subjective state space: while a finer spec-

ification appears to capture the underlying market better, it entails a larger recovery equation

system and requires more price data for the recovery process. Consequently, even a small devia-

tion between specifications can generate significant and irreconcilable differences in recovered

results. Unlike the original recovery operating on the true specification, whose recovery results

are fully characterized by the dominant eigenspace of the Arrow-Debreu (AD) price matrix, our

perturbative analysis shows that the entire eigenspace spectrum determines the extent of incon-

sistency. When this spectrum is dense, higher eigenvalues lie close to the dominant eigenvalue,

making recovered characteristics (captured by the dominant eigenspace) highly sensitive to any

changes in the specification input via a significant coupling between the dominant and higher

eigenspaces. Because the entire AD price matrix encodes the price information used in recov-

ery, changes from the entire eigenspace spectrum are compounded into the recovered charac-

teristics when the specification input changes. As a result of this spectral impact, even a minor

adjustment in the price information carried by AD price matrix (as the specification changes)

can generate significant changes in recovery results, explaining persistent inconsistencies that

do not subside as the input specification becomes finer.

Empirically, we document robust recovery inconsistencies using option data. The results

confirm the critical role of state space specification in the recovery process, as anticipated by

our theoretical (qualitative and perturbative) analyses. Given sparse option price data, we first

employ a neural network technique from the literature to construct stable implied volatility sur-

faces and AD price matrices. We then implement recovery under various specifications and

estimate several inconsistency measures. These measures increase systematically as the neces-

sary and sufficient condition for consistency becomes more severely violated, directly linking

specification input to the magnitude of recovery inconsistencies.

We further illustrate how the inherently subjective nature of the state space specification in-

fluences broader applications of recovery theory. Specifically, we show how this subjectivity (i)

drives consistency issues in other prominent versions of the recovery framework and (ii) affects
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the evaluation of a well-known bound on the equity market risk premium. With regard to the

continuous-time version of the recovery, specifying the state space corresponds to specifying

the dynamics of the state variable. When this dynamics is unobserved, the standard practice

of applying a finite-differencing procedure, an inherently subjective choice, can significantly

distort the resulting AD price matrix and recovery outcomes. With regard to the equity risk

premium bound, we first implement recovery to obtain the state probability distribution in a

market-based setting, in which the aggregate stock return serves as the state variable. Using

this recovered distribution, we evaluate a correlation parameter (involving the market-based

stochastic discount factor and the state variable), whose sign constitutes a sufficient condition

to validate the bound. Because the recovered distribution depends on the subjective specifica-

tion input, so too does the evaluation of this correlation and, consequently, whether the bound’s

sufficient condition (but not the value of the bound) holds in the market-based setting.

Related literature: There is a long-standing interest in recovering market beliefs, risk prefer-

ences, and time preferences from asset prices. Early work by Breeden and Litzenberger (1978)

derives the risk-neutral distribution under a fictitious null risk aversion using option prices. Ross

(2015)’s Recovery Theorem provides sufficient conditions, i.e., time-separable preferences and

time-homogeneous transition probabilities, to uniquely disentangle beliefs from preferences.

Subsequent literature evaluates empirical merits of these assumptions. For instance, Borovička

et al. (2016) and Hansen and Scheinkman (2017) link them to the dominance and recoverabil-

ity of the transitory component in the SDF decomposition of Alvarez and Jermann (2005), while

Bakshi et al. (2018), Qin et al. (2018), and Jackwerth and Menner (2020) document counterfactual

asset pricing implications. Our paper contributes to this literature by showing that consistent re-

covery remains elusive even when the Recovery Theorem’s assumptions are taken as given. In

the broader context of eigenproblems in asset pricing, Borovička and Stachurski (2020) derive

a necessary and sufficient condition for the existence of a unique and stable value function in

recursive utility models. Our tractable perturbative analysis complements this line of work by

going beyond the Perron–Frobenius dominant eigenspace. We find that the entire eigenspace

spectrum, including all eigenvalues and both left and right eigenvectors, is important to quantify

recovery inconsistencies.

Another strand of the literature extends the Recovery Theorem by relaxing its assumptions or

generalizing its setting. Carr and Yu (2012) derive recovery in a continuous setting with bounded

state variables, Walden (2017) extends this to unbounded supports, Qin and Linetsky (2016)
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adapts recovery to continuous-time Markov processes, and Dillschneider and Maurer (2019) ex-

plore the role of Perron–Frobenius operator theory. Further contributions include Martin and

Ross (2019) on a relationship between the recovered time preference and the unconditional ex-

pected return on long-maturity bonds, Jensen et al. (2019) on relaxing time homogeneity and

accommodating growing state spaces, and Horvath (2025) on recovery in a dividend-related nu-

meraire requiring asset prices associated with only a single tenor. We show how the consistency

issue exists in these extended recovery settings. We also connect our analysis to bounds on the

equity risk premium. Martin (2017) derives a lower bound for the equity risk premium condi-

tional on a negative correlation condition (NCC) between the market return and the product of

the SDF and the market return. In a recovery setting, we find that the sign of the NCC can vary

with the state space specification, illustrating how recovery consistency affects the evaluation of

such bounds in a market-based context.

Empirically, we follow Audrino et al. (2021), who use a neural network approach à la Ludwig

(2015) and regularization to construct stable implied volatility surfaces and AD matrices from

sparse option data. Building on this, we implement separate recoveries under different spec-

ifications and compare respective recovery results while preserving no-arbitrage of observable

price data via the law of one price. This allows us to isolate the effect of subjective specification

choices and document systematic recovery inconsistencies.

Overall, our findings underscore that survey data remain a more direct channel for learning

about market beliefs and complex contingent decisions, as argued by Giglio et al. (2022). In

a model-free, non-parametric setting, asset prices can only provide bounds on expectations,

consistent with the results of Martin (2017) and Gormsen and Koijen (2020).

The current paper is organized as follows. Section 2 briefly reviews the basic recovery frame-

work, introduces and illustrates the consistency requirement for the recovery results. Section

3 presents the main analysis. Section 3.1 establishes a necessary and sufficient condition for

consistent recoveries (Proposition 1), Section 3.2 quantifies the recovery consistency issue and

its persistence (Proposition 2) via a perturbative analysis, Section 3.3 discusses the robustness

of the recovery consistency issue in extended versions of the recovery framework. Section 4

demonstrates the prevalence and significance of recovery inconsistencies in the data. Section 5

concludes. Appendices present methodological details, further empirical evidence and techni-

cal derivations.
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2 Recovery and Consistency Requirement

This section introduces the recovery consistency and discusses its quantitative and testable

characteristics. We motivate the consistency notion in the original recovery theorem setup in

Section 2.1 and introduce the recovery consistency requirement in Section 2.2.

2.1 Basic Recovery Framework

A brief summary of Ross (2015)’s original recovery framework and the recovery implementation

is instructive to set the stage for our recovery consistency analysis.

Recovery setup and assumptions: The basic recovery framework in a discrete setting starts with

a standard specification of the underlying (data-generating) finite state space i ∈ S ≡ {1, . . . , S}

and time t ∈ {0, . . . , T}. Assume that the associated financial market is complete and free of arbi-

trage opportunities. As a result, a unique stochastic discount factor (SDF) process exists and can

be identified with the marginal utility of the representative agent in the economy. To uniquely

determine the representative agent’s risk and time preferences, as well as the state probability

distribution (in the physical measure) from asset prices, Ross (2015)’s recovery framework makes

two important assumptions.

Assumption A1. The preference is time-separable i.e., the SDF growth from the time state (t, i) to

(t+1, j) has the following functional form: Mt,t+1(i, j) = δ
Mj

Mi
, ∀i, j ∈ S, ∀t ∈ {0, . . . , T −1}, where

δ is a constant parameter and Mk depends only on the state k, ∀k ∈ S.

Assumption A2. The state transition dynamics are time-homogeneous, i.e., the transition proba-

bilities from the time state (t, i) to (t+1, j) in the physical measure are time-independent: pt,t+1(i, j) =

pij , ∀i, j ∈ S, ∀t ∈ {0, . . . , T − 1}.

The first assumption associates the representative agent’s discount factor (i.e., time prefer-

ence) with a constant δ, and marginal utility (i.e., risk preference) with the state-contingent Mi,

for i ∈ S, in the recovery process. The second assumption associates the underlying state transi-

tion with a Markovian recurrent dynamics, allowing for asset prices observed over various time

horizons (i.e., tenors) to implicate this transition dynamics.

Recovery Theorem and implementation: Throughout, we employ the boldface notation to denote

a vector or a matrix. Let the matrix AS×S denote the Arrow-Debreu (AD) price matrix, whose

element Aij is the price at the current time state (t, i) of the AD asset paying one unit of the
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numeraire at the next-period state (t + 1, j) and zero otherwise. Similarly, let the matrix PS×S

denote the transition probability matrix containing the one-period transition probabilities pij

in the physical measure. Given the two recovery assumptions above, the pricing of AD assets is

Aij = δpij
Mj

Mi
, or

Aij
1

Mj
= δpij

1

Mi
, ∀i, j ∈ S =⇒

∑
j∈S

Aij
1

Mj
= δ

1

Mi
, or A

1

M
= δ

1

M
, (1)

where 1
M denotes the S × 1 vector of inverse marginal utilities. The above equation shows that

this vector is an eigenvector of the AD price matrix A under the two recovery assumptions. Since

A is a matrix of all positive (AD price) elements {Aij}, it has a unique all-positive right eigenvec-

tor corresponding to its dominant and positive (largest) eigenvalue (Perron-Frobenius theory).

This uniqueness of the Perron-Frobenius dominant eigenspace establishes Ross (2015)’s Recov-

ery Theorem, in which the recovered characteristics {δ,Mi, pij} are associated with the unique

dominant eigenvalue-eigenvector pair {δ(1),x(1,R)} (i.e., eigenspace) of the AD price matrix A,

δ = δ(1),
1

M
= x(1,R), pij =

1

δ(1)
Aij

x
(1,R)
j

x
(1,R)
i

, where Ax(1,R) = δ(1)x(1,R). (2)

While being central to the recovery framework, the AD price matrix A is not fully observed be-

cause at any current time state (t, i), AD contracts Akj initiated in non-current states ({k} ̸= i)

are not available. Instead, A is implied from the prices of assets associated with different tenors

given the time homogeneity (Assumption A2). Let Aτ ;ij be the current price at (t, i) of the τ-

period AD asset paying one unit of the numeraire in the future time state (t + τ, j) (and zero

otherwise). Note that the pricing of τ + 1-period AD assets is recursive by rolling the τ-period

AD prices an additional period, Aτ+1;ij =
∑S

k=1Aτ ;ikAkj , or in matrix notation,

Aτ+1︸ ︷︷ ︸
S×S

= Aτ︸︷︷︸
S×S

A︸︷︷︸
S×S

=⇒ A = A−1
τ Aτ+1, (3)

where S rows of S×S matrix Aτ (resp., matrix Aτ+1) contain the current observable AD prices of

S tenors in {1, . . . , S} (resp., S tenors in {2, . . . , S+1}). That is, the information from a collection

of observable (current) prices of S + 1 different tenors are required to deduce the complete set

of state-contingent prices involving S states.1 The dominant eigenspace of matrix A, which is

1In principle, since one row of matrix A (the one containing the prices of AD assets initiated in the current state)
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implied from the observable price matrices Aτ and Aτ+1 in recursive system (3), then delivers

the recovery results.

Beyond the dominant eigenspace: A preliminary and important observation about the above re-

covery framework informs our subsequent analysis of the recovery consistency. Namely, the

time separability and homogeneity assumptions of the recovery delineate an exact and sepa-

rate correspondence for every pair of respective eigenspaces of AD price matrix A and transi-

tion probability matrix P. For every k-th eigenspace, the right (column) eigenvectors x(k,R)
S×1 and

p
(k,R)
S×1 , and separately, the left (row) eigenvectors x

(k,L)
1×S and p

(k,L)
1×S , of these matrices are related

by the marginal utilities in the same way,2

x(k,R) = Diag
Å

1

M

ã
p(k,R), x(k,L) = p(k,L)Diag (M) , δ(k) = δ δ(k)p , ∀k ∈ S, (4)

where Diag (M) and Diag
(

1
M

)
respectively are S × S diagonal matrices of marginal and inverse

marginal utilities and δ is the time discount factor. The dominant pair (k = 1) characterizes

key results of the recovery framework. When the the state space specification S is known or

given, the right eigenspace (1, R) in (4) indeed identifies the dominant right eigenvector of AD

price matrix with the inverse marginal utilities, which delivers the Recovery Theorem.3 The

left eigenspace (1, L) in (4) identifies the dominant left eigenvector of AD price matrix with the

steady-state risk-neutral state probability distribution, which determines the asymptotic pricing

of long-term bond yields (Martin and Ross (2019)).

Motivated by the fact that the underlying state space specification is not observed, the re-

covery consistency inquiry asks whether the results recovered using different specifications are

reconcilable. The higher-order eigenspaces (k > 1) inform this inquiry via the property that

the exact pairwise relationships in (4) break down for a general specification (i.e., other than

the underlying specification, as quantified in Section 3). Intuitively, this breakdown reflects a

loss of price information when price data is employed in the recoveries based on different state

is observed, we only need to collect AD prices for S different tenors. In practice, our empirical analysis (Section 4)
employs options of all tenors in our sample and determines A from the system (3) via a least-squares approach. The
employment of S, S + 1, or more available tenors does not alter the nature of the recovery consistency issue because
this issue stems from the specification employed in the recovery process (as we elaborate in Section 3.3.3).

2The eigenspace notation is Ax(k,R) = δ(k) x(k,R), x(k,L) A = δ(k) x(k,L), and Pp(k,R) = δ
(k)
p p(k,R), p(k,L) P =

δ
(k)
p p(k,L), where k ∈ {1, . . . , S}.

3Note that the dominant eigenvalue and eigenvector of the stochastic matrix P are respectively δ
(1)
p = 1 and

p(1,R) = 1S×1. As a result, the equation in (4) concerning the right eigenspace at k = 1 recovers the inverse marginal
utilities, x(1,R) = Diag

(
1
M

)
p(1,R) = 1

M
.
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space specifications. The entire spectrum of the implied AD price matrix characterizes the re-

covery results obtained for a specification under consideration as well as their divergence from

the underlying (true) characteristics. Going beyond the dominant eigenspaces of the AD price

and transition probability matrices therefore extends the characterization of the recovery to the

characterization of the recovery consistency, providing us with an analytical approach to quan-

tify and relate the recovery consistency to the price information retention in the recovery pro-

cess. In particular, Section 3.2.2 below demonstrates this spectral decomposition and employs

it to quantify the recovery consistency issue.

2.2 Consistency Requirement

Consistency is an important requirement inherent to the recovery process. This is because the

specification inputs needed in the recovery process, such as the number of states S of the under-

lying state space, are not observed prior to the recovery implementation. As a result, different

recovery results obtained uniquely under different specification inputs are subject to a basic re-

quirement of being mutually consistent as they all pertain to the same underlying market model.

To illustrate, the transition probabilities recovered under two different specifications need to be

reconcilable (i.e., identical) after we aggregate them in accordance with the mapping and con-

solidation of states in the two specifications. This section introduces the consistency require-

ment for recoveries, setting up an analytical framework for the recovery consistency analysis via

examining impacts of the state space specification on the recovery results. This analysis helps

to qualify consistent recoveries and explain their conceptual and empirical discrepancies when

the consistency requirement fails.

Recovery consistency setup: It is instructive to illustrate the recovery consistency in a thought-

experiment setup, noting that the consistency issue is generic and exists regardless of the way

the setup is constructed. Consider two different analysts recovering the same (objective and

unobserved) underlying market model. We assume that the first analyst adopts S = {1, . . . , S}

and the second adopts S = {1, . . . , S} as their respective subjective specification input for the

recovery process. Without loss of generality, let S < S. We refer to S and S as the original and

consolidated specification, respectively, and employ an overbar to denote quantities associated

with the consolidated specification.4

4The demonstration of the recovery consistency issue just requires the two specifications to be different for a
comparison of the recovery results associated with these specifications. That the first analyst’s (original) specification
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In the recovery framework, the state space specification is inherent to the information struc-

ture contained in (and revealed by) asset prices. To capture this information structure of the

state space specification, let the partition of the consolidated specification S = {1, . . . , j, . . . , S}

be nested within the original specification S = {1, . . . , j, k, . . . , S}. That is, each consolidated

state j ∈ S either (i) coincides with a single original state, j = j ∈ S, or (ii) contains (couples)

several original states, j = {j, k, . . .} ⊂ S. This nesting partition of state spaces, S ⊂ S, signi-

fies that the original (finer) specification S unambiguously contains more information about the

state space structure than the consolidated (coarser) S.

The first analyst determines the implied AD price matrix A from Equation (3) and recovers

the original market model of time and risk preferences and transition probability {δ,MS×1,PS×S}

characterized by the unique dominant eigenspace of A (1). Endowed with the consolidated

specification S, the second analyst perceives and constructs the set of (consolidated) τ-period

AD assets and their current prices {Aτ ;i j}, each paying one unit of the numeraire in the respec-

tive consolidated state j in τ periods (and zero otherwise). For the analysts’ current states to be

reconcilable, note that i ∈ i. Given an integrated and arbitrage-free financial market, the asset

prices observed by the analysts are related by the law of one price (LoP), Aτ ;i j =
∑

j∈j Aτ ;i j ,

∀j ∈ S. Similar to (3), the second analyst determines the implied consolidated AD price ma-

trix AS×S from the recursive equation system associated with the consolidated specification,

A = A
−1
τ Aτ+1,5 and recovers the market model

{
δ,MS×1,PS×S

}
characterized by the unique

dominant eigenspace of matrix A.

Consistent recoveries: Given that the same underlying market model drives observable asset

prices, the recovery results obtained by different analysts are subject to the consistency require-

ment that these results pertain to the same underlying market model. When this requirement

is not met, the two sets of recovered results are inconsistent with each other, indicating that at

least one of them is also inconsistent with the underlying market model.6

As two analysts employ different subjective state space specifications, quantifying the con-

coincides with the underlying S is just for convenience, helping to quantify the recovery inconsistency from the un-
derlying (preferences and probabilities) characteristics in the thought-experiment setting. Importantly, the recovery
consistency issue does not posit or rely on observing the underlying specification or characteristics. Our empirical
analysis of recovery consistency (Section 4) does not assume the knowledge of the underlying (true) specification.

5 Similar to Aτ and Aτ+1 in (3), Aτ and Aτ+1 are S × S matrices that stack observable current prices {Aτ ;i j} of
tenors τ ∈ {1, . . . , S} and τ ∈ {2, . . . , S + 1} in their rows. Given a finer specification S, the first analyst therefore
needs (S − S) extra tenors compared to the second analyst (associated with the coarser S). An explicit illustration is
in Equation (6) below.

6Our analysis does not rule out (or rely on) the premise in which both analysts’ specifications and their recovery
results are inconsistent with the underlying.
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sistency requirement first involves the formulation (and translation) of one analyst’s recovery

results in the other analyst’s specification, before their recovery results can be compared. That

is, the recovery consistency requirement centers on reconciling different (specification-specific)

recovery results for a meaningful comparison and verification. Crucially, this consolidation step

is where the information contained in asset prices can be misconstrued by analysts, giving rise

to a loss of price information in the recovery process and the recovery consistency issue. While

all our recovery consistency results and derivations hold for general setting, a simple (and same)

example helps to illustrate aspects of these general results throughout.

Example 1. Consider two (original and consolidated) state space specifications S = {1, 2, 3} and

S = {1, 2}with nesting partitions S ⊂ S, where 1 = 1 (single state) and 2 = {2, 3} (coupled state).

Assume that the current state is the single state 1 = 1.

We now describe the recovery processes, their consistency requirement and verification in this

illustrating example, which informs our general analysis of the recovery consistency in the next

section.

Recovery implementation and consistency requirement: Starting with the (underlying) market

model {δ,Mi, pij} associated with the original specification i, j ∈ S = {1, 2, 3}, current and

observable asset prices {Aτ,1j} for all target states j ∈ S and tenors τ can be generated. En-

dowed with the original specification S, the first analyst perceives and employs these observ-

able prices (not the underlying market model) to obtain the 3 × 3 implied AD price matrix

A = A−1
τ Aτ+1 (3), solves for its unique dominant eigenspace, and by construction, recovers the

underlying model {δ,Mi, pij}. Endowed with the consolidated specification S, the second an-

alyst perceives and employs the current and observable τ-period consolidated AD asset prices

{Aτ,1 j}.7 This consolidation step helps the second analyst to obtain the 2 × 2 implied AD price

matrix A = A
−1
τ Aτ+1 (Footnote 5), solve for its unique dominant eigenspace and recover the

model {δ,M i, pi j}.

The recovery consistency concerns the compatibility of characteristics recovered by the two

analysts as these characteristics pertain to the same underlying market model. Given the nesting

partition of specifications in Example 1, the associated consistency requirement is intuitive and

7 For the current Example 1, in the consolidation step, the τ-period consolidated AD asset prices employed by
the second analyst is deduced from those by the first analyst by the LoP, Aτ ;1 1 = Aτ ;11 and Aτ ;1 2 = Aτ ;12 +Aτ ;13.
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characterized by the following conditions

δ = δ, M1 = M1, p1 1 = p11, p1 2 = p12 + p13. (5)

That is, the consistent recovered characteristics by different analysts are identical for single

(identical) states, and consistently aggregatable for coupled (consolidated) states.

Consistency and information retention: The comparison of analysts’ recovery results starts with

the consolidation step. Recovering a market model of S = 3 states, the first analyst employs

assets across 4 different tenors stacked in 3× 3 observable τ-period matrices Aτ = {Aτ,ij} (con-

cerning tenors τ ∈ {1, 2, 3}) and Aτ+1 = {Aτ+1,ij} (concerning tenors τ + 1 ∈ {2, 3, 4}) for the

recursive equations (3). For the second analyst, recovering a market model of S = 2 states re-

quires 3 tenors in 2×2 matrices Aτ (concerning τ ∈ {1, 2}) and Aτ+1 (concerning τ +1 ∈ {2, 3}).

As the observable prices employed by analysts are related by the LoP (Footnote 7), Aτ is deduced

from aggregating relevant columns of Aτ ,


A1,11 A1,12 A1,13

A2,11 A2,12 A2,13

A3,31 A3,32 A3,33


︸ ︷︷ ︸

Aτ

−→


A1,11 A1,12 +A1,13

A2,11 A2,12 +A2,13

A3,11 A3,12 +A3,13

 =


A1,1 1 A1,1 2

A2,1 1 A2,1 2

A3,1 1 A3,1 2

 −→
 A1,1 1 A1,1 2

A2,1 1 A2,1 2


︸ ︷︷ ︸

Aτ

,

(6)

where that last operation removes the extra tenor not needed in the recovery associated with

the coarser S (Footnote 5). This consolidation step clearly illustrates the difference in the price

information utilized by the two recoveries, which is the source of the recovery consistency issue.

As the second analyst’s coarser specification S requires fewer tenors of asset price inputs, this

step drops the last row of consolidated asset prices (last operation in (6)) in the deduction of

Aτ . However, such an operation is not inconsequential because the eliminated row may carry

non-redundant information, beyond what is in the retained rows of Aτ . When this happens, in-

tuitively, the information retained in the asset prices employed by the two analysts differ, leading

to different and inconsistent recovery results.8 Building on the insight of this simple example,

Proposition 1 below formalizes an equivalent relationship between the recovery consistency and

the information retention in general setting. An application of this proposition then explicitly

8Note that the second analyst drops the last row of the middle 3× 2 matrix in (6) to obtain Aτ , and drops the first
row to obtain Aτ+1. Whereas, the first analyst needs further information (concerning the tenor τ = 4, which is not in
Aτ (6)) for the recovery.
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demonstrates the consistency of the consolidation step (6) (as discussed below (11)).

3 Recovery Consistency Analysis

This section presents the current paper’s main analysis and conceptual findings about the re-

covery consistency. We first adopt a qualitative approach to establish a necessary and sufficient

condition for consistent recoveries from a price information perspective (Section 3.1). We then

employ a quantitative approach to assess the robustness and magnitude of the recovery consis-

tency issue (Section 3.2) and discuss its relevance in extended settings (Section 3.3).

3.1 Qualitative Aspects of Recovery Consistency

Recall that the recovery results are characterized by the dominant eigenspace of the AD price

matrix (1). Hence, the most direct approach to compare different analysts’ recovery results is to

relate their respective AD price matrices. However, as these matrices can only be implied from

observable prices of different tenors (3) in accordance with a state space specification input, we

first need to relate the subjective specifications of different analysts. Consider a nesting partition

of the two analysts’ specifications, S ⊂ S, in the recovery consistency setup (Section 2.2). These

specifications can be quantified by a binary indicator Ck j ,

Ck j = 1 if k ∈ j, Ck j = 0 if k /∈ j, ∀k ∈ S, j ∈ S. (7)

The values of this indicator together form aS×S indicator matrixC, which maps the two specifi-

cations and characterizes the state space information associated with these specifications. Em-

ploying the LoP to relate observable AD prices in different specifications (Footnote 7) and solving

for the AD price matrices, the mapping C of two specifications implies the following relationship

between these matrices

AS×SCS×S = CS×SAS×S . (8)

It is important to observe that Equation (8) quantifies and expresses the recovery consistency re-

quirement in terms of analysts’ specifications and their AD price matrices.9 This feature allows

9While the the recovery consistency requirement (5) is intuitive and expressed in terms of various relationships
between recovered characteristics (time and risk preferences, and transition probabilities), the consistency condition
(8) is concise and expressed in terms of a matrix equation of AD prices and the state space mapping C.
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us to identify the premise of the recovery consistency issue, which is inherent in the informa-

tion structure and subjectivity of analysts’ state space specifications. Recall that while these AD

price matrices A and A are implied from price data (3), indicator matrix C (7) arises exclusively

from analysts’ subjective (exogenous) specifications. Given a set of price data generated by an

underlying (objective) market model, not every exogenous indicator matrix C satisfies the con-

sistency condition (8). Equivalently, not every two subjective specifications of the state space

are simultaneously consistent with the observed price data. Building on this insight of the re-

covery consistency condition (8), the following proposition presents the exact (i.e., necessary

and sufficient) premise for consistent recoveries,

Proposition 1 (Recovery consistency issue). Let S ⊃ S denote two (subjective and nesting) state

space specifications of the same underlying (but unobserved) market model. The recovery results

obtained in the two specifications are mutually consistent if and only if all states {j} ∈ S that

belong to a coupled state j ∈ S are associated with identical characteristics, i.e., marginal utilities

and transition probabilities,

Mi = Mk, pi h = pk h; ∀i, k ⊂ j; j, h ∈ S. (9)

Above, pi,k ≡
∑

k∈k pik denotes the one-period aggregate transition probability. A proof of

this proposition is relegated to Appendix B.1. Intuitively, Proposition 1 asserts that when the

characteristics associated with the fine model S are indistinguishable to the coarse S, no infor-

mation is lost or distorted between adopting a coarser S and a finer S, preserving the recovery

consistency among the two specifications. Several observations are in order. First, the above in-

tuitive relationship between information retention and consistency across different recoveries is

utmost (i.e., equivalent) and manifest in the fact that (9) is both a necessary and sufficient con-

dition. Second, this condition is restrictive, indicating that the recovery results are almost surely

inconsistent across state space specifications subjectively adopted by different analysts. That

is, without observing the state space specification, the subjectively presumed S and S satisfy-

ing the necessary and sufficient condition (9) for recovery consistency is practically a measure-

zero premise. Third, Proposition 1 reveals an endogenous nature of the recovery consistency

issue. Namely, apart from specifications, condition (9) also involves the characteristics (pref-

erences and transition probabilities) that are to be recovered. Such an endogeneity motivates

our approach to analyze and demonstrate the recovery consistency issue by employing various
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analysts of different subjective specifications, even when a set of recovery results is uniquely ob-

tained for each specification. It is important to observe that the approach and two-analyst setup

do not impose or restrict, but identify, the premise for consistent recoveries and the lack thereof.

It is instructive to illustrate Proposition 1’s connection between consistent recoveries and

price information retention for the specific Example 1 (of single state 1 = 1 and coupled states

2 = {2, 3}). When condition (9) holds, the one-period AD prices satisfy A1 1 = A11, A2 1 = A21 =

A31, A1 2 = A12 + A13, and A2 2 = A22 + A23 = A32 + A33.10 These price identities in turn

assure a consistent (information-preserving) relationship between the implied one-period AD

price matrices A3×3 and A2×2. Namely, summing the coupled (i.e., 2nd and 3rd) columns of A

creates an auxiliary 3× 2 matrix A+ of identical (i.e., redundant) 2nd and 3rd rows (per the price

identities above, A21 = A31, A22 + A23 = A32 + A33). Removing the extra 3rd row reproduces A

without a loss of price information as this row is redundant,


A11 A12 A13

A21 A22 A23

A31 A32 A33


︸ ︷︷ ︸

A

−→


A11 A12 +A13

A21 A22 +A23

A31 A32 +A33


︸ ︷︷ ︸

A+

−→

 A11 A12 +A13

A21 A22 +A23


︸ ︷︷ ︸

A

, (10)

leading to information-preserving dominant eigenspaces of A and A,11


A11 A12 A13

A21 A22 A23

A31 A32 A33


︸ ︷︷ ︸

A


x
(1,R)
1

x
(1,R)
2

x
(1,R)
2


︸ ︷︷ ︸

x(1,R)

= δ


x
(1,R)
1

x
(1,R)
2

x
(1,R)
2


︸ ︷︷ ︸

x(1,R)

−→

 A11 A12 +A13

A21 A22 +A23


︸ ︷︷ ︸

A

 x
(1,R)
1

x
(1,R)
2


︸ ︷︷ ︸

x(1,R)

= δ

 x
(1,R)
1

x
(1,R)
2


︸ ︷︷ ︸

x(1,R)

.

(11)

That is, the dominant eigenvalues are identical, δ(1) = δ
(1)

= δ. and the non-redundant (first

two) components of x(1,R) coincide with components of x(1,R), preserving the consistency of

the two analysts’ recovery results characterized by the respective dominant eigenspaces. Note

that the price identities (Footnote 10) underlying the consistent relationship (10) between the

implied one-period AD price matrices also assure a consistent information retention across the

10 First, substituting condition (9) into AD asset pricing equationsAij = δpij
Mj

Mi
implies price identitiesA21 = A31,

and A22+A23 = A32+A33. Second, the LoP applied on Example 1’s nesting specifications {1 = 1, 2 = {2, 3}} implies
A1 1 = A11, A2 1 = A21, A1 2 = A12 +A13, and A2 2 = A22 +A23.

11The auxiliary matrixA+ (10) having identical last two rows implies that the last two components ofA’s dominant
eigenvector are also identical x(1,R)

2 = x
(1,R)
3 , delivering (11).

14



observable τ-period price matrices Aτ and Aτ employed by the two analysts. Summing the cou-

pled (2nd and 3rd) columns and removing a (3rd) extra redundant row consistently transformAτ

into Aτ as required for the recovery consistency (6).12

When condition (9) fails, the consolidation between the implied A and A, as well as be-

tween the observable Aτ and Aτ , is not consistent. In this premise, the extra rows resulting

from the consolidation step are not redundant (not identical), implicating a loss of price in-

formation across the specifications that two analysts employ in their recovery processes. As a

result, the dominant eigenspaces of A and A, while being unique for respective specifications S

and S, characterize different sets of recovery results that do not satisfy the consistency require-

ment. Equipped with Proposition 1 and insights from the specific Example 1, we next analyze

the severity and robustness of the recovery consistency issue in a general setting.

3.2 Quantitative Aspects of Recovery Consistency

Proposition 1’s finding of a restrictive premise (9) for consistent recoveries across subjective

specifications motivates a crucial inquiry about quantitative and relevant impacts of specifica-

tions on the recovered results. In particular, using a perturbative analysis, we examine whether

a convergence of subjective specifications (i.e., S becomes finer, approaching S) leads to a con-

vergence of the associated recovery results (Section 3.2.1). We relate the convergence properties

to the consistent price information retention in different recovery specifications (Proposition 2

and Section 3.2.2). Technical derivations concerning in this section are relegated to Appendix

B.2.

3.2.1 Perturbative Setup of Recoveries

A perturbative setup provides an analytical framework to quantify a persistent difference in the

recovery results for converging specifications of generic numbers of states, indicating even more

severe recovery inconsistencies when the specifications sufficiently (non-perturbatively and re-

alistically) differ from each other. The perturbative setup therefore serves as a modeling conve-

nience, not a limitation or presumption, to demonstrate a robust recovery consistency issue.

12In fact, thanks to the recursive equations, Aτ+1 = AτA and Aτ+1 = AτA (3), the relationship goes both
directions. A consistent consolidation (summing coupled columns and removing extra and redundant rows) between
the implied one-period AD matrices A and A leads to a consistent consolidation between the observable τ-period
AD matrices Aτ and Aτ for all τ , and vice versa.
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Perturbative setup: Consider two subjective (original and consolidated) nesting specifications

S ⊃ S with respectively S ≥ S states of the market model, in which the current state is a single

state 1 = 1. To deviate from Proposition 1’s consistent but restrictive recovery premise, the per-

turbative setup features an unperturbed (zero-order) consistent component and a perturbative

(first-order) inconsistent component. Throughout, subscript 0 denotes the unperturbed com-

ponent in a generic decomposition X(ε) = X0 + ε∆X, where ε is a common small perturbative

parameter.13 Equipped with this notation, the underlying market model’s marginal utilities and

time discount factor in the perturbative setup are decomposed as follows,

Mi(ε) = M0i + ε ∆Mi︸ ︷︷ ︸
≡ki

∀i ∈ i, i ∈ S, and δ(ε) = δ0 + ε∆δ, (12)

where the state-specific real parameters {ki} model the SDF perturbative component {∆Mi}

with |ε ki| ≪ |M0i|, and the state-independent parameter ∆δ models the discount factor pertur-

bative component with |ε∆δ| ≪ |δ0|. Other than ε being a small parameter, we do not impose

any constraints on the perturbative component of the setup (12). That is, the perturbative com-

ponent is independent of (i.e., exogenous to) the unperturbed component because the former is

not limited a priori by consistency constraints in the perturbative setup. For simplicity, we adopt

unperturbed (consistent) underlying transition probabilities {pij} as in (9).14 Note that the per-

turbative setup is not restrictive or peculiar because any general (non-perturbative) setup can

always be decomposed into a consistent and an inconsistent (not necessarily small) component.

In this regard, our tractable analysis and findings in the perturbative setup just present an indi-

cator of a more significant recovery consistency issue of the general setup, in which retaining

terms up to the linear order in ε is not enough to quantify the magnitude of inconsistencies.

Several further observations concerning the perturbative setup are in order.

First, by construction, the unperturbed components being consistent mean that zero-order

(unperturbed) characteristics {δ0,M0i, pij} associated with the original specification S satisfies

the necessary and sufficient consistency condition (9). As a result, the recovery process employ-

ing price data generated by these zero-order characteristics, but adapted to the consolidated

specification S, yields consistent zero-order (unperturbed) characteristics {δ0,M0i, pi j}.15 The

13We interchangeably employ the sign ∆ and subscript 1 to denote the the perturbative component.
14 While a perturbation to the probabilities can be formulated and added to the current perturbative setup (12),

it does not change our finding that recovery inconsistencies persist even when analysts’ subjective specifications
diverge perturbatively, and is omitted to simplify the exposition.

15That is, as an application of Proposition 1, the second analyst’s recovery results in that process satisfy
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consistency of unperturbed components and Proposition 1 motivate the setup (12) in which the

underlying unperturbed marginal utilities in all original states i of a coupled state i are equal.

Second, full recovery results (not their unperturbed and perturbative components separately)

under different specifications are our subject of interest because the underlying (true) market

model is the full model. Due to the exogeneity (i.e., independence) between the constrained

(consistent) unperturbed and unconstrained (generic) perturbative components discussed ear-

lier, as desired, such a full market model (12) is not constrained by Proposition 1’s restrictive

premise. Third and importantly, fixing the underlying specification S and a (small, but strictly

non-zero) parameter ε ̸= 0, our analysis examines and demonstrates how the recovery results

associated with another specification S remain divergent from the underlying characteristics in

the limit of S approaching S. It is the exogeneity between unperturbed and perturbative com-

ponents that enables persistent recovery inconsistencies of the full model, starting from a loss

of price information inherent to its perturbative component.16

Perturbative decomposition: Given a small perturbative parameter ε and for tractability, our per-

turbative analysis retains the two leading (zero- and first-) orders in ε. As a result, every quantity

(e.g., marginal utility) X of interest in the full model under specification S has a decomposi-

tion into unperturbed and perturbative components, X(ε) = X0 + εX1. In the full model under

specification S, the corresponding quantity X has the decomposition X(ε) = X0+εX1. By con-

struction, the unperturbed components are consistent, namely X0 and X0 are compatible after

the consolidation of respective specifications S and S (satisfying Proposition 1). Since the un-

derlying (true) market model (12) is a full model (i.e. having both unperturbed and perturbative

components), the recovery consistency analysis concerns the full quantities X(ε) and X(ε) and

their relationship (but not X0 and X0 and their relationship).

Given the market model (12), the τ-period observable AD prices matrices associated with S

{δ0,M0i, pi j}, where δ0 = δ0, M0i = M0i, and pi j =
∑

j∈j pij , ∀i ∈ i, and i, j ∈ S.
16In contrast, the vanishing limit of ε → 0 while S and S remain distinctive specifications is not the subject of

interest because in this limit, the recovery concerns only the unperturbed component, which is consistent by con-
struction (12).
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and S can be decomposed into unperturbed and perturbative matrix components,17

 Aτ (ε) = A0τ + εBτ ,

Aτ+1(ε) = A0τ+1 + εBτ+1,

 Aτ (ε) = A0τ + εBτ ,

Aτ+1(ε) = A0τ+1 + εBτ+1.
(13)

The analysts solve the respective recursive systems (3) and obtain the implied one-period AD

price matrices,18

A(ε) = A0 + εB, with A0 = A−1
0τ A0τ+1, B = A−1

0τ (Bτ+1 −BτA0) ,

A(ε) = A0 + εB, with A0 = A
−1
0τ A0τ+1, B = A

−1
0τ

(
Bτ+1 −BτA0

)
.

(14)

Per Recovery Theorem, these implied AD price matricesA(ε),A(ε), and their dominant eigenspaces

quantify the respective recovery results of the two analysts. By construction, their unperturbed

component matrices A0 and A0 are consistent, i.e., the associated dominant eigenspaces char-

acterize consistent recovered results in the zero order. The solutions of the perturbative com-

ponent matrices B and B, which couple the unperturbed (A0τ , A0τ ) with perturbative (Bτ , Bτ )

observable matrices in product forms, elucidate the compounded structure of the recovery con-

sistency issue. Namely, while the consistency issue originates from different (inconsistent) price

information retained in the observable perturbative component matrices Bτ and Bτ , its overall

impacts on the recovery results are compounded further (multiplied) by the observable unper-

turbed component matrices A0τ and A0τ . The presence of free parameters {ki} (12) assures

the exogeneity (between consistent unperturbed and inconsistent perturbative components)

behind this compounded structure (Footnote 17), which we employ to quantify a persistent re-

covery consistency issue among converging specifications next.

3.2.2 Perturbative Analysis of Recoveries

AD price matrices, eigenspaces, and information retention: The analysis starts with relating the

implied one-period AD matrices A(ε) and A(ε) and their components (14), whose dominant

17 Substituting (12) into the τ-period AD priceAτ ;1j(ε) = δ(ε)τpτ ;1j
Mj(ε)

M1(ε)
produces the linear expansionAτ ;1j(ε) =

δτpτ ;1j
M0 j

M0 1
+ ε δτpτ ;1j

M0 j

M0 1

(
τ ∆δ

δ
+

kj

M0 j
− k1

M0 1

)
. Identifying these expansions with the matrix equation Aτ (ε) =

A0τ + εBτ (13) yields explicit expressions for the components (tj) of the unperturbed and perturbative matrices:

[A0τ ]tj = δtpt;1j
M0 j

M0 1
and [Bτ ]tj = δtpt;1j

M0 j

M0 1

(
t ∆δ

δ
+

kj

M0 j
− k1

M0 1

)
. Expressions for A0τ and Bτ follow similarly

from the consolidated τ-period AD prices {Aτ ;1 j(ε)}.
18These recursive systems have solutions A(ε) = A−1

τ (ε)Aτ+1(ε) and A(ε) = A
−1
τ (ε)Aτ+1(ε) in the perturbative

setup. Expanding, retaining, and matching the two leading (zero- and first-) orders in ε of these solutions deliver (14).
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eigenspaces characterize the recovery results under S and S. Since the unperturbed component

is consistent by construction, the focus is on the price information retained in the perturbative

component.

Generalizing the notation and operations underlying the consolidation and comparison of

recovered characteristics in nesting specifications (10), letX+ denote theS×S auxiliary (column-

sum) matrix resulting from summing relevant columns j ∈ j of a generic S × S matrix X that

correspond to a coupled state j, separately for every j ∈ S. Also, let X– denote another S × S

auxiliary (row-removed) matrix resulting from removing (S − S) extra rows of the S × S matrix

X that are not needed for the recovery under the coarser specification S.19 The LoP in the con-

solidation step (6) implies the following relationship between the price information retained in

the perturbative component of analysts’ one-period AD price matrices

A0τ︸︷︷︸
S×S

B︸︷︷︸
S×S

= A0τ –︸ ︷︷ ︸
S×S

B+︸︷︷︸
S×S

=⇒ B = A
−1
0τ A0τ – B+, (15)

where A0τ – is the row-removed version of the τ-period observable unperturbed price matrix

component A0τ , and B+ the column-sum version of the one-period implied perturbative AD

price matrix component B. Two observations are in order. First, the price information retained

in B and B differs almost surely. Indeed, the price information employed by the first analyst

(stored in columns of B) is aggregated and hence lost in the column-sum formation of B+. The

removing of extra asset tenors that are employed by the first analyst (rows of A0τ ) further cur-

tails price information input (rows of A0τ –) used by the second analyst. These two sources of

information loss are coupled in B (15) via the product A0τ – B+. The exogeneity (independence)

between unperturbed (inherent in A0τ –) and perturbative (inherent in B+) components then

rules out a consistent price information retention in their coupling, leading to inconsistent in-

formation contained in B and B. Second, such a consistent retention of the price information

takes place only in a special and restrictive premise of measure zero, enforcing the first obser-

vation. Indeed, only when the S × S matrix B+ is such that its extra (S − S) rows are identical,

(15) reduces to the identity B = (B+)–, in which the latter matrix’s expression follows the above

19 The matrix notation X+ reflects its column construction from relevant columns of X in the consolidation step
(6), X+

:,j
≡

∑
j∈j X:,j , for all j ∈ S (where X:,j denotes column j of matrix X). The matrix notation X– reflects the

fact that the first analyst will need S − S extra tenors of observable asset prices compared to the second analyst in
the recovery process (Footnote 5), i.e., removing (S − S) extra rows in X (associated with S) to obtain X– (associated
with S) helps to compare the recovery results across specifications.
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(Footnote 19) notation.20 That is, B can be effectively obtained from B by first summing relevant

columns and then removing extra rows. Since these extra rows are identical (i.e., redundant) in

this special premise, their removal does not affect the information retention, and hence, pre-

serves the recovery consistency for the full (unperturbed and perturbative) model. However,

such an effective operation only holds in the current special premise because, in general, we

cannot directly aggregate (sum) columns of an implied one-period AD price matrix to obtain

another (both need to be solved separately from recursive equation systems). As the perturba-

tive component is not subject to the consistency constraints (i.e., the exogeneity between B and

B) in the setup (12), this special premise is unlikely (i.e., restrictive).

We next relate eigenspaces of the implied AD price matrices A(ε) and A(ε). The dominant

eigenproblem of these matrices, A(ε)x(1,R)(ε) = δ(1)(ε)x(1,R)(ε) andA(ε)x(1,R)(ε) = δ
(1)

(ε)x(1,R)(ε),

has the following respective solution,21

δ(1)(ε) = δ
(1)
0 + ε x

(1,L)
0 B x

(1,R)
0 , x(1,R)(ε) = x

(1,R)
0 + ε

S∑
k=2

x
(k,L)
0 Bx

(1,R)
0

δ
(1)
0 − δ

(k)
0

x
(k,R)
0 , (16)

δ
(1)

(ε) = δ
(1)
0 + ε x

(1,L)
0 B x

(1,R)
0 , x(1,R)(ε) = x

(1,R)
0 + ε

S∑
k=2

x
(k,L)
0 Bx

(1,R)
0

δ
(1)
0 − δ

(k)
0

x
(k,R)
0 , (17)

where δ
(k)
0 , x(k,R)

0 and x
(k,L)
0 are the k-th eigenvalue and right (column) and left (row) eigenvec-

tors of the unperturbed matrix component A0, and similar notation (with a bar) denotes cor-

responding quantities of A0 (14). Consistent unperturbed component implies δ
(1)
0 = δ

(1)
0 = δ0.

Therefore, we substitute the unperturbed consistent dominant eigenvalues δ
(1)
0 and δ

(1)
0 by δ0

hereafter.

The two analysts’ recovered preferences, δ(ε) = δ(1)(ε), M(ε) = 1
x(1,R)(ε)

(16) and δ(ε) =

δ
(1)

(ε), M(ε) = 1
x(1,R)(ε)

(17), clearly decompose the coupling of unperturbed and perturbative

components (14) into the acting of the perturbative component (B and B) on the eigenspaces of

all orders (i.e., spectrum) of the unperturbed component (A0 and A0). Given the consistent un-

20In this special premise, the coupling A0τ – B+ reduces to A0τ

(
B+

)
–, where in our notation, the S × S matrix(

B+
)

– is obtained by removing extra rows of the S × S matrix B+ (while B+ is obtained by summing relevant
columns of the S × S matrix B+). Substituting this reduction into (15) yields B =

(
B+

)
–.

21The the dominant eigenspace (16) follows from the corresponding eigenequation in explicit perturbative expan-
sions, (A0 + εB)

Ä
x
(1,R)
0 + ε∆x(1,R)

ä
= (δ

(1)
0 + ε∆δ(1))

Ä
x
(1,R)
0 + ε∆x(1,R)

ä
. We then match terms of same order of

ε, multiply to the left of the eigenequation by the left unperturbed eigenvectors x
(k,L)
0 , k ∈ {2, . . . , S} of matrix A0,

and employ the orthonormality between these left and right eigenvectors, XL
0 X

R
0 = 1S×S to solve for perturbative

components ∆δ(1) and ∆x(1,R).
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perturbed component by construction, their eigenspaces of corresponding order can be consis-

tently related across the two specifications by the exact pairwise relationship (4). As a result, the

above spectral decomposition provides a tractable framework to compare full recovery results

and demonstrate their persistent inconsistencies in terms of the unperturbed spectrum {δ(k)0 }

when the subjective specifications S and S converge. We quantify and analyze this consistency

issue in the recovered preferences next.

Inconsistency in the recovered time preferences: To the first perturbative order (i.e., up to the mul-

tiplicative factor ε), the divergence in recovered time preferences (16) and (17) can be decom-

posed as,22

δ
(1)

(ε)− δ(1)(ε) ∼
î
x
(1,L)
0 A

−1
0τ A0τ – − x

(1,L)
0

ó
︸ ︷︷ ︸
(1×S)− consistent unperturbed factor

· B+ x
(1,R)
0︸ ︷︷ ︸

(S×1)− perturbative factor

. (18)

As a scalar product of a row and a column vectors, the decomposition (18) represents the co-

variation (across states) of unperturbed and perturbative factors. As a result, the inconsistency

in recovered time preferences depends on not only the magnitude of these factors but also on

their alignment (i.e., cross-state correlation) in the state space. As the perturbative component

B+ is unconstrained by the consistency condition, this alignment can have any degree, giving

rise to almost surely inconsistent recovered discount factors, δ
(1)

(ε) ̸= δ(1)(ε). Only in the special

premise mentioned earlier, in which the auxiliary matrix B+’s extra rows are redundant, their

removal does not have an impact on the information retention. As a result, δ
(1)

(ε) = δ(1)(ε), i.e.,

the recovered time preferences are consistent only in this special and restrictive premise.23

Given the likelihood of the recovery consistency issue and per the discussion below (12), the

key question of interest is whether a finer subjective specification S (with a larger number S of

states) delivers a smaller recovery inconsistency for the time preference. To address this inquiry,

recall that the exogeneity between the two factors of the scalar product (18) makes their align-

ment ambiguous. For a fixed underlying model and original specification S, a finer subjective

specification S corresponds to a larger number S of coupled states, i.e., fewer original states are

combined into coupled states in the aggregate. As a result, B+ is constructed by consolidating

22To arrive at the divergence (18), we employ the identity B = A
−1
0τ A0τ – B+ (15) and the consistency property

of the unperturbed right eigenvectors x
(1,R)
0 and x

(1,R)
0 (i.e. these vectors share identical relevant components) to

reduce Bx
(1,R)
0 to B+ x

(1,R)
0 , as in (11).

23When B and B are consistent, these matrices satisfy B+
j,: = Bj,:, ∀j ∈ j, j ∈ S, which then imply A0τ –B+ =

A0τB, and x
(1,L)
0 B+ = x

(1,L)
0 B, nullifying the RHS of (18).
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(i.e., summing) fewer columns of the original B. This procedure does not necessarily produce

a more consistent B+ (characterized by identical relevant rows j ∈ j within each coupled state

j ∈ S) because B is a priori unconstrained (arbitrary). In contrary, it is possible that the resulting

B+ can boost the product (18) when S increases. That is, when fewer columns of B are consoli-

dated, extra rows of the resulting B+ can become more dissimilar, moving further away from the

special premise of recovery consistency mentioned earlier (i.e., the price information retention

differs more across two specifications). In such cases, the recovery inconsistencies increase with

a finer subjective specification S.

A counting argument offers a deeper insight into this non-convergence property of the re-

covery results. Namely, a finer subjective specification involves a more complex recovery pro-

cess, and hence, is subject to larger errors and inconsistencies. A finer subjective specification

S (i.e., a larger number S of states) requires a larger number of observed tenors, and hence, a

larger recursive equation system to determine the implied one-period AD price matrix A(ε) =

A
−1
τ (ε)Aτ+1(ε) (3). In this inversion of the τ-period Aτ (ε) of a larger dimension S × S, even

a small difference between specifications S and S (and the associated asset prices) construed

and employed by analysts can result in significant inconsistencies among their recovery results.

That is, this dimensionality problem and the non-convergent recovery consistency issue reflect

the endogenous nature of the implied AD price matrix’s determination that is central but not

directly observed in the recovery.

To explicitly demonstrate this counting argument, we observe that price matrices belong to

the class of Vandermonde matrices, whose known analytical inverse gives rise to the following

expression for the divergence (18) of the recovered time preferences (Appendix B.2.1)

δ
(1)

(ε)− δ(1)(ε) ∼

[
x
(1,L)
0 X

R
Diag

(
1

X
(R)
01

)
D

−1
S DS– Diag

Ä
X

(R)
01

ä
XL − x

(1,L)
0

]
B+ x

(1,R)
0 ,

(19)

where matrices XL and XR contain left (row) and right (column) eigenvectors of the unper-

turbed AD price matrix A0, or XLA0X
R = Diag

Ä
δ
(1)
0 , . . . , δ

(S)
0

ä
, and diagonal matrix Diag

Ä
X

(R)
01

ä
contains elements of the dominant right eigenvector x(1,R)

0 on the diagonal. Vandermonde ma-

trices DS and DS are associated with the recovery recursive equation systems in S and S. Specif-
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ically, the tractable inverse matrix D
−1
S is given by its elementsî

D
−1
S

ó
1i
=

Ä
δ
(1)
0

äS−i
+ a1

Ä
δ
(1)
0

äS−i−1
+ . . .+ aS−i−1

Ä
δ
(1)
0

ä
+ aS−i

δ
(1)
0

∏S
j ̸=1(δ

(1)
0 − δ

(j)
0 )

, i ∈ {1, . . . , S}, (20)

where coefficients a’s are given in (B.18). The substitution of (20) into (19) shows that the di-

vergence of the recovered time preferences is a rational function of S eigenvalues {δ(j)0 }Sj=1 of

the unperturbed one-period AD price matrix. When the subjective specification becomes finer,

the divergence of the recovered time preferences features a larger degree of singularities (larger

number of poles for the underlying rational function (20), as detailed in (B.21)-(B.22)). As a re-

sult, a larger S does not mitigate the inconsistency in the recovered time preference when AD

price matrix A0 has sufficiently dense spectrum (small eigenvalue gaps |δ(1)0 − δ
(j)
0 |). In this case,

intuitively, a more elaborate subjective specification S increases recovery inconsistencies be-

cause the (non-linear) recursive determination of the implied AD price matrix amplifies the im-

pact of price information retention on the recovery results.

Inconsistency in the recovered risk preferences: To the first perturbative order (i.e., up to the mul-

tiplicative factor ε), the divergence in the recovered risk preferences concerns a comparison of

two vectors of dimensions S (16) and S (17),24

S∑
k=2

x
(k,L)
0 Bx

(1,R)
0

δ0 − δ
(k)
0︸ ︷︷ ︸

loadings l
(k)
M

· x
(k,R)
0 vs.

S∑
k=2

x
(k,L)
0 Bx

(1,R)
0

δ0 − δ
(k)
0︸ ︷︷ ︸

loadings l(k)M

· x
(k,R)
0 , (21)

where l
(k)
M and l

(k)
M are the loadings of the recovered risk preferences x(1,R)(ε) (16) and x(1,R)(ε)

(17) respectively on the k-th (unperturbed) eigenvectors x(k,R)
0 and x

(k,R)
0 . In the difference with

the divergence in the recovered time preferences (18), the divergence in the recovered risk pref-

erences (21) involves the entire spectrum of the unperturbed AD price matrices A0 and A0. The

loadings l
(k)
M and l

(k)
M are larger when the associated (unperturbed) eigenvalues are closer to the

dominant (unperturbed) eigenvalues (i.e., smaller gaps |δ(k)0 − δ0| and |δ(k)0 − δ0|). This impact

pattern reflects the spectral distribution. Namely, the lower k-th eigenvectors x
(k,R)
0 and x

(k,R)
0

(those associated with k-th smallest eigenvalues) have a stronger influence on the recovery re-

sults x(1,R)(ε) and x(1,R)(ε) of the full model (16), (17), because they are closer to the dominant

24Note that by construction of consistent unperturbed component (12), the non-redundant unperturbed ele-
ments coincide, x(1,R)

0i = x
(1,R)

0 i
, ∀i ∈ i ∈ S, and cancel out in (16) and (17).
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eigenvectors in the spectrum.25 This finding uncovers an important role of AD price matrices’

spectrum (i.e., eigenvalue distribution) on the recovery inconsistencies.

Similar to the dominant eigenvectors, the respective non-redundant elements of the k-th

eigenvectors x
(k,R)
0 and x

(k,R)
0 also coincide, for k ∈ {2, . . . , S} (Footnote 24). As a result, the di-

vergence of corresponding terms in the spectral decomposition of the recovered risk preferences

(21) is driven by the divergence of the associated loadings,

l
(k)
M − l

(k)
M =

1

δ0 − δ
(k)
0︸ ︷︷ ︸

spectrum gap factor

î
x
(k,L)
0 A

−1
0τ A0τ – − x

(k,L)
0

ó
︸ ︷︷ ︸
(1×S)−unperturbed consistent factor

· B+ x
(1,R)
0︸ ︷︷ ︸

(S×1)−perturbative factor

, k ∈ {2, . . . , S}.

(22)

This decomposition mirrors the divergence of recovered time preferences (18). Specifically, the

divergence of the k-th corresponding loadings (22) features a scalar product of an unperturbed

consistent and a perturbative vector-valued factors, but it is further scaled by a spectral gap

factor (i.e., the spectral impact discussed bellow (21)), resulting in an almost surely divergent

loadings l
(k)
M ̸= l

(k)
M . Crucially, when the unperturbed AD price matrix have a dense spectrum

(large factors 1∣∣∣δ(k)0 −δ0

∣∣∣ , k ∈ {2, . . . , S}), the impact of the different price information retentions is

multiplied and aggregated into a significant inconsistency of the recovered risk preferences (21).

A finer subjective specification S does not warrant a more consistent price information re-

tention, and therefore, the inconsistency of recovered risk preferences persists whenS increases.26

Quantitatively, a counting argument using expressions (19)-(20) of the matrix inverseA
−1
0τ shows

that the divergence of the recovered risk preferences is a rational function of a higher degree of

irregularities when the subjective specification S becomes finer. That is, a small difference be-

tween the price information retained in S and S is exacerbated due to the recovery process’s

increasing complexity as S increases. We summarize these quantitative findings on the persis-

tent recovery consistency issue in the following proposition.

25 To illustrate this spectral gap impact, consider the (degenerate) limit |δ(k)0 − δ0|→ 0. In this limit, the recovery
solution is degenerate and can be chosen as a linear combination of the 1st (dominant) and the k-th eigenvectors,
i.e., both have similar influence of the recovery outcome.

26When S increases, fewer columns of B are consolidated, extra rows of the resulting B+ can become more dis-
similar because this perturbative component is arbitrary (unconstrained) in general, as we observed below (18) for

the divergence δ
(1)

(ε)− δ(1)(ε). Furthermore, note that the inconsistency quantified by (22) is conservative because
it concerns only the paired loadings, i.e., those {l(k)M } indexed by k ∈ {1, . . . , S}. The unpaired loadings, i.e., the extra

loadings {l(k)M } indexed by k ∈ {S + 1, . . . , S} in the recovery under S that have no counterpart l
(k)
M under S, when

included, enable a larger and more robust divergence between the recovered risk preferences under these specifica-
tions.
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Proposition 2 (Persistent recovery consistency issue). Let S ⊃ S denote two (subjective and nest-

ing) state space specifications of the same underlying market model. The recovered characteristics

under the two specifications remain mutually inconsistent when the specification S becomes finer

(but remains strictly distinct from S) when (i) the spectrum of the AD price matrix A0 (14) is suf-

ficiently dense, and (ii) extra rows of the column-sum matrix B+ (15) are non-redundant.

As elaborated earlier, condition (i) addresses the quantitative aspect, assuring that the incon-

sistencies (18)-(20) and (21) are significant, and condition (ii) addresses the qualitative aspect,

assuring that the inconsistencies do not vanish as S increases. In particular, condition (ii) holds

only in a special and restrictive premise because the perturbative component is unconstrained

a priori. Next, we discuss the relevance and robustness of the recovery consistency issue in con-

nection with the related literature.

3.3 Application and Generalizations

This section presents an application of the recovery consistency analysis in an estimation pro-

cess of the equity premium’s lower bound (Section 3.3.1), before discussing aspects of the recov-

ery consistency in a continuous setting (Section 3.3.2), a best-fist approach (Section 3.3.3), and

a generalized and no-arbitrage framework (Section 3.3.4).

3.3.1 On Determining the Equity Premium’s Lower Bound

As an application of the recovery consistency analysis, we consider the setting of Martin (2017)’s

prominent lower bound on the equity market risk premium. This bound is derived given a

negative correlation condition (NCC) in the physical measure between the market return and

the product of the SDF and market return. In a market-based (recovery) framework in which

neither the SDF nor the physical measure is directly observed, the determination of this NCC

provides an illustration for the recovery process and its consistency analysis. Specifically, let

Mt,Rt and Rft denote respectively the SDF, market return and risk-free rate at a generic time

t, and Q the risk-neutral measure. Martin (2017) derives an identity for the equity premium,

Et[RT ]−Rft =
1

Rft
V arQt [RT ]− Covt [MTRT , RT ]. Under the NCC, i.e., Covt [MTRT , RT ] < 0, the

market risk premium is bounded from below by the discounted conditional variance of future

market return in the risk-neutral measure 1
Rft

V arQt [RT ], which can be determined using price
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data of traded options on the stock market.

Our analysis concerns the market-based determination (i.e., the recovery) of the covariance

underlying the NCC by two analysts with nesting (original and consolidated) state specifica-

tions S ⊃ S, in which the future state-contingent payoffs (cum-dividend stock index prices)

{Yj} quantifies the future uncertain return RT . As such, the analysis does not affect the Martin

(2017)’s bound (which is determined consistently in the risk-neutral measure) but the evalua-

tion of the underlying NCC covariance (in the physical measure to be recovered) qualifying the

bound. Different recovered characteristics lead to different subjective evaluations of the NCC,

and potentially, different conclusions concerning the equity premium bound by different ana-

lysts. Let the initial state be a single state 1. The two NCC covariances relevant to the two analysts

are,27

 CS ≡ CovS (MY,Y ) =
∑

j p1j (MjYj − ES [MY ]) (Yj − ES [Y ]) ,

CS ≡ CovS
(
M Y , Y

)
=
∑

j p1 j

Ä
M jY j − ES

[
M Y

]ä Ä
Y j − ES

[
Y
]ä

,
(23)

For a tractable comparative analysis, we employ the perturbative setup (12) in which a generic

quantity X has a (consistent) unperturbed component and a (unconstrained) perturbative com-

ponent in both specifications, i.e., Xj(ε) = Xj0 + ε∆Xj and Xj(ε) = Xj 0 + ε∆Xj , with the

unperturbed component satisfying Proposition 1’s consistency condition, Xj0 = Xj 0, ∀j ∈ j,

∀j ∈ S. To compare the covariances (23), we use the LoP to relate and decompose the consoli-

dated payoff Y j in terms of its original counterparts,28

Y j(ε) =
∑
j∈j

δ(ε)

δ(ε)

p1j
p1 j

Mj(ε)/M1(ε)

M j(ε)/M1(ε)
Yj(ε) = Y 0j + ε∆Y j , ∀j ∈ S, where

Y 0 j = Y0j , ∆Y j = Ej [∆Yj ] +

(
∆δ

δ
(1)
0

− ∆δ

δ
(1)
0

)
Y0j +

Ç
Ej

ï
∆Mj/M1

M0j/M01

ò
−

∆M j/M1

M0j/M01

å
Y0j . (24)

This no-arbitrage perturbative decomposition of the consolidated market future payoffs in terms

of analysts’ recovered characteristics is intuitive. An overestimation in the second analyst’s re-

27The realized return RT equals the realized cum-dividend payoff Yj at T divided by the current price at t, which
does not affect the conditional covariance at t.

28Given a complete market, the LoP relates the state-contingent asset prices across different specifications as∑
j∈j δ(ε)p1j

Mj(ε)

M1
Yj(ε) = δ(ε) p1 j

Mj(ε)

M1
Y j(ε), which derives the first expression of Y j(ε) in (24). Its unperturbed

and perturbative components then follow from matching terms of same powers of ε and that the consistent unper-
turbed component in the setup (12) satisfies Proposition 1.

26



covered time or risk discount factors, ∆δ

δ
(1)
0

> ∆δ

δ
(1)
0

or
∆Mj/M1

M0j/M01

> Ej

î
∆Mj/M1

M0j/M01

ó
, is accompanied by

an offsetting underestimation in the analyst’s future payoffs, ∆Y j < Ej [∆Yj ], or vice versa. Such

changes (and their directions) stem from the absence of arbitrage opportunities, in which case

the observable current (expected discounted) prices of these state-contingent payoffs satisfy the

LoP (Footnote 28).

Next, substituting the perturbative decomposition (24) into (23) delineates the deviation be-

tween analysts’ NCC covariances into a product of perturbative and unperturbed components

CS − CS ∼ CovS

{
M0 j Y 0 j , ∆Y j − Ej [∆Yj ]

}
+ CovS

{
∆
Ä
M j Y j

ä
− Ej [∆ (Mj Yj)] , Y 0 j

}

=

{
2

(
∆δ

δ
(1)
0

− ∆δ

δ
(1)
0

)
+

Ç
Ej

ï
∆Mj/M1

M0j/M01

ò
−

∆M j/M1

M0j/M01

å}
CovS

{
M0 j Y 0 j , Y 0 j

}
︸ ︷︷ ︸

<0 (unperturbed NCC)

, (25)

where the unperturbed component is consistent across specifications, i.e., we have CovS

{
M0 j Y 0 j , Y 0 j

}
=

CovS {M0 j Y0 j , Y0 j}. Equation (25) signifies the fact that, because recovery results directly con-

cern the quantities (SDF and payoffs) in the NCC covariances, a divergence in analysts’ recovered

time or risk preferences results in a divergence in their NCC covariances.

For the sake of specificity, we assume that this unperturbed covariance (the last factor in (25))

is negative, i.e., the unperturbed component conforms with Martin (2017)’s NCC premise. Since

the perturbative component is unconstrained (and exogenous to the unperturbed component)

in general, their product in the divergence decomposition (25) can take any sign, giving rise to

different NCC evaluations across analysts. Qualitatively, an overestimation of the second ana-

lyst’s recovered time or risk discount factors (i.e., ∆δ

δ
(1)
0

> ∆δ

δ
(1)
0

, as discussed below (24)) weakens the

NCC under the second analyst’s perspective compared to the first analyst’s (i.e., the first analyst’s

NCC CS < 0 implies the second analyst’s NCC CS < 0 because the divergence (25) is negative

in this case). In contrast, an underestimation toughens the NCC under the second analyst (i.e.,

CS < 0 does not assure CS < 0 because the divergence (25) is positive in this case). Quantita-

tively, the divergence in the recovered time preferences
Å

∆δ

δ
(1)
0

− ∆δ

δ
(1)
0

ã
is quantified by (18)-(19),

and in the recovered risk preferences
Å
Ej

î
∆Mj/M1

M0j/M01

ó
− ∆Mj/M1

M0j/M01

ã
quantified by (16)-(17) and (21)-

(22), both of which are large when Proposition 1’s recovery consistency condition is violated.29

29Note that as δ(ε) = δ
(1)
0 + ε∆δ, δ(ε) = δ

(1)
0 + ε∆δ, and consistent unperturbed component δ(1)0 = δ

(1)
0 , we have

∆δ

δ
(1)
0

− ∆δ

δ
(1)
0

= δ(ε)−δ(ε)

δ
(1)
0

, which is (19). Similarly, with the recovered risk preferences M(ε) = 1

x(1,R)(ε)
(16), M(ε) =
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As a result, the recovery consistency issue has a direct impact on divergent evaluations of the

NCC by different analysts.

3.3.2 Continuous Setting

A discussion of the recovery in a parallel continuous setting offers an alternative perspective and

further insight into Proposition 2’s finding that a finer subjective specification does not improve

the recovery consistency issue. To this end, consider a continuous setting whose underlying

state variable yt is characterized by the following stochastic process

dyt
yt

= µQ
y dt+ σydB

Q
t , (26)

where µQ
y and σy are processes adapted to the natural filtration generated by a standard Brown-

ian motion BQ
t in the risk-neutral measure. Let V (yt) denote the state-contingent price process

of a generic traded asset. The risk-neutral pricing of this asset, V (yt) = EQ
t

[
e−rtdtV (yt+dt)

]
, to-

gether with an application of the Itô’s lemma on the state dynamics (26) implies that

V (yt) = V (yt) + EQ
t

î
e−rtdtV (yt+dt)− V (yt)

ó
=
î
1+ dt(−rt +DQ)

ó
V (yt), (27)

with the infinitesimal generator DQ = µQ
y yt

∂
∂yt

+ 1
2 σ

2
y y

2
t

∂2

∂y2t
. A comparison of the pricing equa-

tion using (i) state prices, Vi =
∑

k AikVk, with (ii) the risk-neutral pricing (27) identifies a map-

ping between the dt-period AD price matrix A in the discrete setting and the infinitesimal gen-

eratorDQ in the continuous setting. Namely, A←→ 1+ dt(−rt +DQ) , or

∑
yk

A(yi, yk)V (yk) = V (yi) + dt

ï
−ri + µQ

y yi
∂

∂yi
+

1

2
σ2
y y

2
i

∂2

∂y2i

ò
V (yi). (28)

While an explicit construction for Aik ≡ A(yi, yk) can be obtained by applying a simple finite-

difference scheme on the right-hand side of the mapping (28), not all finite-difference schemes

deliver a consistent construction for the AD price matrix.30 It is important to observe that this

1

x(1,R)(ε)
(17), and consistent unperturbed component x(1,R)

0 = x
(1,R)
0 , the divergence Ej

î
∆Mj/M1

M0j/M01

ó
−

∆Mj/M1

M0j/M01
can

be reduced (up to a proportional coefficient) to the divergence of two terms in (21).
30 To illustrate, consider the simple finite-difference scheme ∂

∂yi
V (yi) =

V (yi+1)−V (yi−1)

2dy
and

∂2

∂y2
i
V (yi) =

V (yi+1)+V (yi−1)−2V (yi)

(dy)2
for the mapping (28). This scheme delivers Aii−1 ≡ A(yi, yi − dy) =

dt
î
− 1

2dy
µQ
y yi +

1
2(dy)2

σ2
y y

2
i

ó
and Aii ≡ A(yi, yi) = 1 − dt

î
ri +

1
(dy)2

σ2
y y

2
i

ó
. When the finite-difference scheme
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inconsistency originates from the underlying state distribution’s inputs on the determination

of the infinitesimal operator. Indeed, the infinitesimal operator DQ arises from the conditional

expectation of the infinitesimal expansion

1

dt
EQ

t [V (yt+dt)− V (yt)]︸ ︷︷ ︸
=DQV (yt)

=
∂V (yt)

∂yt

1

dt
EQ

t [dyt]︸ ︷︷ ︸
=µQ

y yt

+
1

2

∂2V (yt)

∂y2t

1

dt
EQ

t

[
(dyt)

2
]

︸ ︷︷ ︸
=σ2

y y2t

, (29)

where the equality is a convergence in the probability limit in accordance with the normally

distributed of the state variable dyt
yt
∈ N

Ä
µQ
y dt, σ2

ydt
ä

(26). As a result, an ad-hoc finite-difference

scheme of the differentials ∂
∂yt

V (yt) and ∂2

∂y2t
V (yt) that does not take into account the underlying

state variable distribution may entail an inconsistent construction of the AD price matrix and

inconsistent associated recovery results. In particular, a finer finite-difference scheme (i.e., a

smaller step size dy of the state space grid) may generate negative (and hence, inconsistent) AD

prices (see Footnote 30). This feature of the continuous setting mirrors Proposition 2’s persistent

recovery consistency issue in the discrete setting, in which a finer subjective specification does

not mitigate the divergence between the analysts’ recovery results in general.

3.3.3 Best-fit Recovery

Given a specification of S states, the basic recovery recursive system employs just enough ob-

servable τ-period AD price data (i.e., S + 1 tenors τ ) to solve for the S × S one-period AD price

matrix A from Aτ+1 = Aτ A (3). Similarly, a second analyst perceiving another specification S

of S < S states needs less price data (of S + 1 tenors) to solve for the respective S × S AD price

matrix A from Aτ+1 = Aτ A. While the price information retained and employed differs almost

surely across these recovery processes (Proposition 1) and the difference persists even when the

two specifications become closer (Proposition 2), a natural question is whether employing more

than just enough (e.g., all available) price data improves the recovery consistency issue.

To address this question, consider a least-squares approach that utilizes more price data than

needed to obtain best-fit recovery results. Specifically, the best-fit recovery approach interprets

the recovery systems obtaining A from Aτ+1 = Aτ A and A from Aτ+1 = Aτ A as regression

equation systems. This approach employs flexibly all T available tenors in price data (possibly

is such that dy >
σ2
y yi

µ
Q
y

> 0, the AD price Aii−1 is negative (hence, violates the no-arbitrage assumption and is

inconsistent). Similarly, when 0 < dy < σy yi, the AD price Aii is negative (hence, inconsistent).
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T > S, S) to uniquely obtain a set of least-squares characteristics (also implemented in Section

4). These regressions produce the respective one-period AD asset price matrices

Original system: A = [A′
T AT ]

−1 A′
T AT+1,

Consolidated system: A =
î
A

′
T AT

ó−1
A

′
T AT+1,

(30)

where observable T × S matrix AT and T × S matrix AT contain all available original and con-

solidated τ-period AD asset prices associated respectively with S and S.

First, we recall a basic issue in the recovery approach that employs just enough price data (3).

Namely, even when τ-period observable prices (in Aτ and Aτ ) employed by different analysts

are related by the LoP, different information are retained and utilized in their implied one-period

AD price matrices (A and A). Second, when we employ redundant price data, note that the

LoP still applies and relates observable prices (in AT and AT ) separately for each individual

tenor τ in the data set.31 This rigidity (i.e., only observable asset prices of the same tenor are

related) of the LoP implies that including more tenors in the price data does not resolve the basic

issue above. Intuitively, the difference in the information retention arises from the difference in

the state space specifications, but not from the amount of price data employed. Quantitatively,

to see this problem explicitly in the perturbative setup, consider the perturbative expansions

AT (ε) = AT0 + εBT and AT (ε) = AT0 + εBT . Substituting these expansions into the best-fit

solutions (30) yields the perturbative expressions for the one-period AD price matrices (using

all available price data). These implied matrices have the same features and issues analyzed in

Section 3.2. That is, as long as specificationsS andS differ, the perturbative components of these

one-period AD price matrices (using all available price data) are inconsistent in general, leading

to almost surely inconsistent recovery results. In other words, the relative loss of information

between two subjective recovery implementations persists regardless of employing just enough

or redundant price data.

3.3.4 Generalized and Arbitrage-based Recoveries

Recall that the basic recovery approach aims to recover the entire transition probability matrix

PS×S by solving for the entire implied AD price matrix AS×S . It is the determination of this

31Specifically, given the same initial current state i, the current AD asset prices observed by the two analysts are
related by the LoP Aτ ;i j =

∑
j∈j Aτ ;ij , for every tenor τ ∈ {1, . . . , T}.
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entire matrix, while subjectively prescribing a dimension S to A, that gives rise to the recovery

consistency issue. Therefore, it is important to know whether alternative approaches, those aim-

ing to recover only the transition probabilities starting from the actual current state, are subject

to inconsistencies. We consider two prominent alternative approaches, namely the generalized

recovery by Jensen et al. (2019) and the arbitrage-based recovery by Horvath (2025).

Generalized recovery: The generalized recovery is tasked with recovering the transition proba-

bilities from the current state using all available tenors of price data, requiring only the time-

separable preference Assumption A1. Without loss of generality, let 1 denote the state at the

current time t = 0. The pricing of the τ-period observable AD asset prices concerns the corre-

sponding τ-period transition probabilities and risk and time preferences, Aτ ;1i
M1
Mi

= δτp0,τ (1, i).

Aggregating these pricing equations across all target states ∀i ∈ S for each tenor τ yields

∑
i∈S

Aτ ;1i
M1

Mi
= δτ , τ ∈ {1, . . . , T}, (31)

where T is the longest available tenor. Together, these T non-linear equations constitute a gen-

eralized recovery system that solves for S unknown time and risk preferences
{
δ, M1

M2
, . . . , M1

MS

}
.32

When S ≥ T , there are multiple solutions to this non-linear equation system in general, rul-

ing out an unambiguous (unique) recovery. When S < T , the system does not have a solution

in general, also ruling out a successful recovery. Importantly, Jensen et al. (2019) observe that

when the observable AD prices {Aτ ;1i} employed in the recovery process are generated by (and

construed consistently with) an underlying model satisfying the time-separable preference as-

sumption, equation system (31) has a unique solution, enabling the generalized recovery. The

consistency issue in the generalized recovery arises when the analyst’s subjective specification

S deviates from (i.e., being inconsistent with) the underlying. Specifically, along the thought-

experiment construction and analysis of Section 3.2 on the recovery consistency issue, a sec-

ond analyst perceiving an another subjective specification S obtains a different recovery system∑
i∈S Aτ ;1 i

M1

M i

= δ
τ

, τ ∈ {1, . . . , T}, whose solution
{
δ, M1

M2

, . . . , M1

MS

}
cannot be reconciled with

that obtained by the first analyst in general. Quantitatively, the non-linearity of the recovery

system (31) enhances the deviation between the recovery results obtained by different analysts

when they employ (subjective and inconsistent) specifications.

32The non-linearity of the generalized recovery system (31) reflects in various powers δτ of the time discount factor
unknown.
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Arbitrage-based recovery: The arbitrage-based recovery is tasked with recovering the transition

probabilities from the current state to any target state for a single tenor (e.g., τ = 1) using asset

prices associated only with that tenor. This is achieved by formulating the basic recovery in an

alternative numeraire other than the standard (dollar) numeraire. The arbitrage-based recov-

ery (i) assumes observable (and foreseeable) dividends {Dti} and ex-dividend aggregate stock

(market) prices {Yti} at time states {(t, i)} in a complete financial market setting, (ii) defines

the dividend account numeraire D, (iii) adopts the time separability Assumption A1 for the risk

preference MD
t,t+τ (1, i) associated with this numeraire, and (iv) adopts the time homogeneity As-

sumption A2 to designate the ex-dividend stock price as the state variable in all periods, Yti = Yi,

∀t. These defining properties are quantified via a change of numeraire in the pricing of the stock

market,

Yti = Et [Mt,t+1(i, j) (Yt+1 j +Dt+1 j)] = Et

î
MD

t,t+1(i, j)Yt+1 j

ó
, with MD

t,t+1(i, j) =
MD

j

MD
i

, (32)

where Mt,t+1(i, j) is the SDF growth associated with the dollar numeraire. Note that a change

of numeraire does not entail a change in the transition probability distributions (i.e., measures)

{pij}. Hence, the arbitrage-based recovery is first implemented in the numeraire D (in which the

time separability is assumed), before translating these results into the dollar numeraire. Specif-

ically, let AD denote the one-period AD price matrix associated with numeraire D, and Y the

column vector stacked with stock prices {Yi}. Equation (32) implies that stock prices consti-

tute the unique dominant eigenvector of this positive matrix, ADY = Y (with unit eigenvalue),

while the basic recovery (2) implemented in D implies that the D-inverse marginal utilities also

constitute the unique dominant eigenvector, AD 1
MD = 1

MD . From these follow 1
MD = Y and the

arbitrage-based recovery results in the dollar measure,33

δ = 1, Mt,t+1(i, j) =
Yi

Yj +Dj
, pij = Aij

Yj +Dj

Yi
. (33)

33 On one hand, starting with the stock pricing Equation (32) Yi =
∑

j pijδ
MD

j

MD
i

Yj =
∑

j A
D
ijYj , or ADY = Y. On

the other hand, starting with the AD assets paying in numeraire D, AD
ij = pijδ

MD
j

MD
i

, or AD
ij

1

MD
j

= pijδ
1

MD
i

, summing

over j yields AD 1
MD = δ 1

MD . These two results identify uniquely δ = 1 and Yi = 1

MD
i

, ∀i, (as positive matrix AD

has a unique dominant Perron-Frobenius eigenvector). Next, given the complete market setting, pricing equation

(32) implies that Mt,t+1(i, j) =
MD

j

MD
i

Yj

Yj+Dj
= Yi

Yj

Yj

Yj+Dj
= Yi

Yj+Dj
, ∀i, j, delivering the recovered risk preferences

in (33). Finally, substituting this Mt,t+1(i, j) into the pricing equation of AD assets paying in the dollar numeraire
Aij = pijMt,t+1(i, j) yields pij = Aij

1
Mt,t+1(i,j)

= Aij
Yj+Dj

Yi
, delivering the recovered transition probabilities in (33).
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Given a state space specification S of the arbitrage-based recovery setup and by restricting to

the initial current state, i = 1, the recovered characteristics in (33) are readily obtained (without

solving for the entire implied AD price matrix A, as {A1j} are observable for actual current state

i = 1). Since the specification is an input into the arbitrage-based recovery, consider a second

analyst perceiving a different partition S and recovering {δ,M t,t+1(1, j), p1 j}. These recovery

results cannot be reconciled with those obtained by the first analyst in general, e.g.,
∑

j∈j pij ̸=

p1 j , signifying the consistency issue due to an unknown and subjective state space specification

in the recovery process.34

4 Empirical Analysis

This section presents an empirical analysis of the recovery consistency issue. Section 4.1 de-

scribes sources and properties of data. Section 4.2 describes the neural network and regulariza-

tion methodologies of a recent literature that we employ in the recovery implementation step.

Section 4.3 formulates various theory-implied recovery consistency measures, presents the time

series of recovery results under different specifications, and demonstrates their inconsistencies

using these consistency measures. Appendix A reports the robustness of these empirical results

and analysis for alternative sample periods and specifications.

Altogether, employing the related literature’s advanced methodologies addressing large but

sparse and noisy option price data, our empirical analysis demonstrates a significant and robust

recovery consistency issue in different sample periods and across different specifications (i.e.,

models). While we quantify inconsistencies as irreconcilable differences between the recovery

results of two models, it is important to emphasize that our empirical analysis does not assume

either specification to be the data-generating (true but unobserved) model.

34Intuitively, the time separability assumption is formulated conceptually for the underlying specification in
the arbitrage-based recovery while it is not observed prior to the recovery process, giving rise to necessary sub-

jective specification inputs by analysts. Quantitatively, by the LoP, A
D
1 j =

∑
j∈j A

D
1j where AD

1j = p1jδ
MD

j

MD
1

and

A
D
1 j = p1 jδ

M
D
j

MD
1

. As a result, the consistency of recovered probabilities p1 j =
∑

j∈j p1j holds only when MD
j = M

D
j ,

or equivalently, Yj = Y j , ∀j ∈ j, ∀j ∈ S (because MD = 1
Y

and M
D

= 1

Y
in the arbitrage-based recovery, Footnote

33). That is, analysts obtain consistent recovered probabilities only in a zero-measure premise where the observable
state variable (stock price) is identical in all original states j’s that pertain to a state j, for all j ∈ S.
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4.1 Data

For our subsequent recovery consistency analysis, we first closely follow the empirical method-

ology of Ludwig (2015) and Audrino et al. (2021) who employ neural network techniques to ob-

tain a robust estimate of the implied volatility surface and state prices. To validate our repli-

cation of this methodology, we repeat our data collection and entire analysis in Appendix A to

conform with their data and original sample periods (referred to as the benchmarks hereafter).

We employ out-of-the-money (OTM) call and put options on S&P 500 for each Wednesday

between January 5, 2000 and August 30, 2023 for the analysis in the main text, and use the data

up to December 26, 2012 in Appendix A for validation.35 We obtain daily closing option and

spot prices, interest rates, and index dividend yields from OptionMetrics. We keep the options

with the average of the (best) bid and ask prices above $0.50. We employ the convention in

which moneyness m ≡ K
X is the ratio of strike (K) to spot price (X) and tenor τ indicates days to

maturity. We restrict the moneyness m’s and tenor τ ’s domains to m ∈ [0.4, 1.6] and τ ∈ [20, 730].

In general, OptionMetrics does not provide interest rates (r) for all tenors for a given date.

Therefore, for each date, we linearly interpolate and extrapolate the data so that we obtain the

full term structure of interest rates. Following Aït-Sahalia and Lo (1998), for each date and tenor

in the data, we compute the implied forward prices (F ) from close to at-the-money (ATM) call

and put pairs, i.e., m ∈ [0.99, 1.01], using the put-call parity. We then derive the implied dividend

yield (d) from the spot-forward parity F = Xe(r−d)τ . However, the ATM option pairs might not

be available for all combinations of dates and tenors in the data. In such a case, we supplement

our data by using the S&P 500 dividend yield from OptionMetrics, and we apply the same inter-

polation and extrapolation procedure for the dividend yield data. Given the dividend yield, we

are able to transform the OTM put options into in-the-money (ITM) calls. Hence, our empirical

implementation will focus solely on the call options.

Lastly, following literature, we require that the options satisfy the general price bounds,

Xe−dτ ≥ C ≥ max{0, (F −K)e−rτ}, (34)

35We use the previous trading day if there was no trading on a Wednesday.
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and the restrictions on vertical and butterfly spreads

−e−rτ ≤ ∂C

∂K
≤ 0 and

∂2C

∂K2
≥ 0, (35)

where C denotes call option price. We exclude options that violate these conditions. Our final

sample consists of 1,326,696 call options, and the summary statistics of average implied volatil-

ities and prices for different moneyness and tenors is given in Table 1.

Table 1: Summary statistics of call options

DITM ITM ATM OTM DOTM
m < 0.90 [0.90, 0.99] (0.99, 1.01) [1.02, 1.10] > 1.10

Panel A: Maturity < 180 days

IV (%) 33.22 20.17 15.60 14.26 18.64
Price 634.08 189.42 72.67 30.35 8.86
N 279,836 245,371 70,162 215,747 54,798

Panel B: Maturity 180 — 365 days

IV (%) 31.29 21.14 18.95 16.90 16.08
Price 920.65 301.12 192.05 112.56 23.85
N 143,439 39,841 8,984 39,797 62,007

Panel C: Maturity > 365 days

IV (%) 28.54 20.88 19.31 17.84 15.86
Price 920.15 344.86 245.54 170.05 44.50
N 81,511 20,421 4,574 20,050 40,158

Notes: This table reports the average implied volatilities (IV) and prices of the call options on S&P 500 in our sample
for different categories of moneyness m and maturities. Moneyness is defined as the ratio of strike to spot price. Our
sample contains option data for every Wednesday from January 5, 2000 to August 30, 2023.

Table 1 broadly reproduces the features of the benchmark data employed by Audrino et al.

(2021) for the extended sample period to August 2023 (also see Table A.1 in Appendix A for the

sample period matching theirs). The implied volatilities, which are key to our subsequent em-

pirical analysis, are also in line with the summary statistics in Ludwig (2015), whose use of the

neural network methodology in obtaining the IV surface estimate is adopted by both Audrino

et al. (2021) and the current paper. These findings provide a necessary validation for the data

processing step before we implement the recovery.
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4.2 Recovery Implementation: Outline and Methodologies

The empirical procedure for the recovery consistency analysis is outlined below. First, for each

date in our sample, we obtain an implied volatility (IV) surface that is smooth, arbitrage-free,

and parametrized by a fine grid of 601 moneyness states. We refer to this fine grid as the original

specification S or the full model, which is associated with the first analyst in the thought exper-

iment (Step 1). Next, we implement a recovery process to obtain the time and risk preferences

and probability distribution under the physical measure associated with the fine grid of the IV

surface (Step 2). Finally, we use the law of one price to construct observable state prices associ-

ated with a consolidated grid of 150 moneyness states (referred to as the consolidated specifica-

tion S, or the consolidated model associated with the second analyst) and implement another

recovery process for this consolidated model (Step 3). A comparative analysis of recovery results

under S and S is key to our paper’s demonstration of recovery inconsistencies (Section 4.3). Our

empirical results are robust to the choices of S and S.36

Step 1: Implied Volatility Surface and State Prices

To determine the τ-period AD price matrix (also referred to as the state prices hereafter) Aτ (3)

via Breeden and Litzenberger (1978)’s methodology, we adopt the neural network approach of

the literature to generate the implied volatility (IV) surface for moneyness m ∈ [0.4, 1.6] and

tenor τ ∈ [20, 730]. This approach is flexible and robust and also results in a smooth, arbitrage-

free IV surface.

The key idea behind this approach is to model the implied total variance ν(m, τ) using a two-

layer neural network

ν(m, τ) ≡ σ2(m, τ)τ = β0 +
N∑
i=1

βif(α0i + α1im+ α2i

√
τ), (36)

where σ(m, τ) is the implied volatility, f(x) = 1
1+e−x is the sigmoid activation function, and N is

the number of neurons (or neural nodes) in the hidden layers.37

Once we obtain 15 no-arbitrage solutions of IV surface, we take the average of the 5 solutions

36For robustness check, Appendix A.3.2 presents the recovery inconsistency results associated with 150- and 1201-
state specifications employed in the literature.

37For each neuron i, α0i and (α1i, α2i) represent the bias and weights of input data, respectively, and βi denotes
the weight of the output. β0 is the bias in the neural network.
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with lowest residual sum of squares. Finally, we compute the T × S matrix of state prices Aτ

using numerical differentiation, where T is the number of tenors of the observable AD prices.

We provide further details of this approach in Appendix A.2.1.

Step 2: Recovery of the Full Model

We start with recovering the full one-period (monthly) AD transition matrix A of S = 601 states

(also referred to as the underlying model in our thought experiment’s terminology). As pointed

out in the literature, directly computing A via (3) can lead to unstable solutions because Aτ

is often ill-conditioned. Therefore, we solve A using ridge regression with an endogenous L2

penalty parameter determined by minimizing the generalized Kullback-Leibler divergence be-

tween the state prices Aτ implied from the data and those generated by the Markov transition

model (3) (see details in Appendix A.2.2). After obtaining the state price transition matrix (i.e.,

one-period AD price matrix) A, we solve and identify its dominant eigenspace (δ(1),x(1,R)) with

the recovered time and risk preferences and subsequently determine the recovered transition

probabilities under the physical measure (2).38

Step 3: Recovery of the Consolidated Model

To empirically assess the impact of state space specification on recovery results, we consider

a second (and separate) recovery implementation based on the specification S (referred to as

the consolidated model in our thought experiment’s terminology). For clarity of the empirical

analysis and exposition, we consider a nesting structure S ⊂ S of the two specifications. This

aims to model the feature that some underlying states of S associated with the first analyst are

inadvertently combined (consolidated) into a state of the second analyst’s subjective coarser

specification S. While the AD assets initiated in the current state and employed in the recovery

process are perceived by analysts in accordance with their subjective specifications, these assets

are traded. Therefore, their prices are necessarily related by the law of one price (i.e., the con-

solidation process) to prevent arbitrage opportunities. From the original S = 601 states and the

observable current asset prices in the full model, we employ this consolidation process to ob-

tain the observable current asset prices in the consolidated model S of S = 150 states. We then

38The τ-period physical and risk-neutral transition probabilities from state i to state j respectively are pt,t+τ (i, j) =

δ−1 Aτ ;ij x
(1,R)
i and qt,t+τ (i, j) = erτ Aτ ;ij , where x

(1,R)
i denotes the i-th entry of vector x(1,R), and Aτ ;ij denotes the

(i, j) entry of matrix Aτ .
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estimate the one-period (monthly) associated AD transition matrix A of 150 consolidated states

(using the ridge regression with an endogenous L2 regularization as in Step 2 above). Finally, we

recover the probability transition matrix P and marginal utilities M in the consolidated model

S.

4.3 Empirical Results

We first report the summary statistics for the recovered full, 601-state model. We then demon-

strate recovery inconsistencies by comparing the full model’s recovered marginal utilities and

transition probabilities with those of the consolidated model. We further analyze how recov-

ery inconsistencies vary with theory-implied measures quantifying the violation of the recovery

consistency condition in the data. The empirical analysis in the main text concerns the sam-

ple period from January 5, 2000 to August 30, 2023. Appendix A.3.1 presents robustness results

using data up to December 26, 2012 (the benchmark sample period) for a validation of the our

recovery implementation.

Recovery Results

Following procedures detailed in the previous section to estimate the implied volatility surface

and implement the recovery, we obtain the risk-neutral and physical (recovered) probability dis-

tributions for one-month ahead transitions. For each date in our sample, we compute the one-

month ahead moments (mean, volatility, skewness, and kurtosis) of returns based on the values

of S&P 500 in all states, using their associated (risk-neutral and physical) probabilities just ob-

tained. This produces a time series for each of these four cross-sectional return moments under

the risk-neutral and physical measures. Based on these time series, Table 2 reports the sum-

mary statistics of the first four moments of the risk-neutral and recovered 30-day-to-maturity

cross-sectional returns. Both risk-neutral and recovered return distributions feature negative

skewness and excess kurtosis, signifying the presence of tail events in the stock index returns.

The median of the mean return under the risk-neutral measure is negative, which is driven by

the fact that the risk-free rate is lower than the dividend yield during periods of the low interest

rate regime (Audrino et al. (2021)).
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Table 2: Summary statistics of risk-neutral and recovered moments

Median Std dev Min 25th 75th Max

Panel A: Risk-neutral moments

Mean (%) −2.02 4.04 −41.95 −3.71 −0.01 5.07
Volatility (%) 19.34 8.36 9.65 15.26 24.55 79.99
Skewness −1.60 0.75 −5.16 −2.20 −1.17 −0.01
Kurtosis 10.12 7.94 2.97 6.75 15.52 56.10

Panel B: Recovered moments

Mean (%) 10.63 5.08 −26.28 7.62 14.24 37.44
Volatility (%) 14.88 7.14 6.39 11.89 19.63 66.99
Skewness −1.11 0.52 −5.76 −1.47 −0.85 0.00
Kurtosis 6.70 3.74 3.00 5.23 8.97 55.60

Notes: This table reports the summary statistics of the risk-neutral and recovered moments of 30-day-to-maturity
cross-sectional returns on S&P 500 for the 601-state full model. Returns are computed by considering all possible
values of S&P 500 on the grid in the next period. Mean and volatility are annualized and reported as percentages. All
moments are unconditional over the period of January 5, 2000 to August 30, 2023.

Recovery Inconsistencies in Risk Preferences

Motivated and guided by our previous conceptual analysis of the recovery consistency issue, we

empirically identify the premises where the recovery consistency condition is more likely to be

violated. We then document and verify that recovery results are indeed inconsistent in these

premises. One such premise is where the marginal utility attains its extrema (lowest or highest

values). For each date in our sample, we identify and record the value of the minimum recovered

marginal utility M jmin
of the consolidated model, with jmin denoting the associated consolidated

state in which the minimum recovered marginal utility takes place. Then, among the original

states of the full model that correspond (i.e., belong) to this consolidated state, we identify and

record the values of the minimum, maximum and median marginal utilities (Mjmin ,Mjmax and

Mjmed , respectively), where jmin, jmax, jmed ∈ jmin.39

Panel A of Figure 1 plots the time series of the recovered marginal utility M jmin
(green line) of

the consolidated model and the corresponding recovered marginal utilities Mjmin (red line) and

Mjmax (blue line) of the full model. The plot shows a difference between Mjmin and Mjmax that

persists in most dates of the sample period (from January 2000 to August 2023). This difference

becomes significantly more pronounced in the recent period (from 2014 onward), coinciding

39Note that Mjmin ,Mjmax or Mjmed do not necessarily represent the global minimum, maximum or median
marginal utilities across all states of the full model. Furthermore, these marginal utilities will likely differ for different
consolidated states.
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Figure 1: Comparison of marginal utilities of the consolidated and full models

Notes: This figure plots the time series of the recovered minimum (M jmin
) and maximum (M jmax

) marginal utilities of
the (150-state) consolidated model, along with the minimum (Mjmin ) and maximum (Mjmin ) marginal utilities among
the original states of the (601-state) full model that correspond to the minimum (jmin ∈ jmin) and maximum (jmax ∈
jmax) marginal utilities states respectively in the consolidated model. Current state’s marginal utility is normalized to
one. The sample period is every Wednesday from January 5, 2000 to August 30, 2023.

with the period when M jmin
also differs more significantly from Mjmin and Mjmax .40 Contrast-

ing this empirical pattern with Proposition 1’s necessary and sufficient condition for consistent

recoveries, which posits on equal marginal utilities Mj for all original states j belonging to a con-

solidated state j, indicates that this condition is violated for states around the minimum recov-

ered marginal utility in the consolidated model (and more significantly violated for the period

from 2014 onward). We verify this indication by comparing this recovered marginal utility M jmin

of the consolidated model with all corresponding recovered marginal utilities {Mj}, j ∈ jmin of

the full model. Not only M jmin
do not coincide with either of the minimum Mjmin and maximum

Mjmax (and median Mjmed , Figure A.2 in Appendix A.3) of the corresponding marginal utilities

in the full model, but also M jmin
is outside of the range [Mjmin , Mjmax ] for most of the dates in

the sample. That is, the second analyst recovering M jmin
for the consolidated state jmin cannot

reconcile the result with the marginal utility range [Mjmin , Mjmax ] recovered by the first analyst

for all original states j belonging to the consolidated state jmin, i.e., inconsistent recovered risk

preferences.

40This observation informs, and is supported by, a more formal statistical correlation analysis of the level of recov-
ery inconsistencies and measures quantifying the violation of the recovery consistent condition in the data (Tables 3
and A.3).
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We repeat this empirical analysis of recovery inconsistencies for the premise of the maximum

recovered marginal utility M jmax
of the consolidated model. Panel B of Figure 1 plots the time

series of the recovered marginal utility M jmax
of the consolidated model and the corresponding

range of the recovered marginal utilities of the full model. This plot exhibits similar patterns, but

with significantly larger magnitudes, than those observed in Panel A. These results indicate sig-

nificant and persistent inconsistencies between the recoveredM jmax
and the recovered marginal

utilities at the corresponding original states. They also indicate that recovery inconsistencies are

significantly larger around consolidated states of highest marginal utilities (i.e., adverse states)

than around those of lowest marginal utilities (i.e., good states). Intuitively, given that adverse

states of the underlying market tend to be rarer, they plausibly are more elusive to the recovery

process than other states. Further empirical evidence for inconsistencies in the recovered risk

preferences for the benchmark period is presented in Figure A.3 (Appendix A.3).

Recovery Inconsistencies in Transition Probabilities

For each date in the sample, we record the recovered one-period transition probabilities {pi j}

between states i and j in the consolidated model and {pij} between states i and j in the full

model.41 We compute the aggregate one-period transition probability pi j from an original state

i to a consolidated state j in the full model by summing over corresponding transitions. Be-

low, we define the one-period relative probability differences associated with the transitions to

a consolidated state j from the current state in the two models

dp 1 j ≡
p 1 j −

∑
j∈j p1j∑

j∈j p1j
, j ∈ S. (37)

The consistency condition (9) posits that these relative probability differences vanish for consis-

tent recoveries of the full and consolidated models. The magnitude of dp 1 j therefore proxies for

the inconsistencies in the recovered probabilities across the two models.

Panel A of Figure 2 plots the time series of the mean of the absolute values of relative prob-

ability difference, |dp 1 j |, across all consolidated states j ∈ S for each date in our sample. This

time series quantifies the unsigned average deviation from the consistent baseline of the recov-

ered transition probabilities from the current state. Panel B plots the median of dp 1 j across

41Recall that the Recovery Theorem recovers the entire transition matrix P under the physical measure, including
transitions from a non-current state i (2).
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Figure 2: Relative probability difference between the consolidated and full models

Notes: This figure plots the mean and median of the relative differences of the one-month recovered transition prob-
abilities between the (150-state) consolidated and (601-state) full models, starting from the current state to states in
the consolidated model. Panel A plots the mean of the absolute values of the relative difference, and Panel B plots

the median of the relative difference. The relative probability difference is defined as
p 1 j−

∑
j∈j p1j∑

j∈j pij
, where j ∈ S and

j ∈ S, and p 1 j and p1j denote the recovered one-month transition probabilities from the current state of the consol-
idated and full models, respectively. The sample period is every Wednesday from January 5, 2000 to August 30, 2023.

j ∈ S for each date, which quantifies the signed average deviation of the recovered transition

probabilities. Both panels show a non-vanishing relative probability difference for many dates

of the sample period from January 2000 to August 2023, indicating persistent inconsistencies

of the recovered transition probabilities. In terms of magnitude, the median value of the rela-

tive difference is large around 2005 and during the recent periods after 2020, while the mean

value is larger between 2015 and 2020, indicating a skewed distribution of the inconsistencies in

these periods. We further present two time-series examples of dp 1 j for the states jmin and jmax

of the consolidated model’s minimum and maximum recovered marginal utilities in Figure A.1

(Appendix A.3). The figure exhibits persistent inconsistencies in the recovered transition proba-

bilities, with larger inconsistencies associated with the adverse state jmax, similar to the pattern

observed in Figure 1.

Variations in Recovery Inconsistencies

In this section, we consider the variations in the inconsistencies of recovered marginal utilities

and recovered transition probabilities.
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Variable inconsistencies in recovered marginal utilities: To analyze the variations of recovery in-

consistencies in marginal utilities with how well the condition for recovery consistency is met in

the data, we introduce two empirical measures quantifying the recovery consistency associated

with marginal utilities. The first consistency measure Cj is a local measure, defined for a con-

solidated state j ∈ S as the difference between the maximum and minimum marginal utilities

associated with original states j belonging to j. Below, we consider two specific choices for the

consolidated state j, namely, jmin and jmax. The second measure Cg is a global measure, defined

as the standard deviation of marginal utilities across all S = 601 states in the full model,

Cj ≡ max
j∈j

Mj −min
j∈j

Mj , j ∈ {jmax, jmin} ⊂ S, Cg ≡
»
V ar (Mj)

∣∣∣
j∈S

. (38)

The condition for recovery consistency (9) posits identical Mj for all j ∈ j, implying that Cjmax
=

0 and Cjmin
= 0.42 As a result, the (non-vanishing) magnitudes of Cjmax

and Cjmin
indicate the

presence and severity of inconsistencies in the recovered risk preferences locally at jmax and jmin.

Similarly, when the underlying market model features a significant state-dependent dynamics

(i.e., highly variable {Mj}), the consolidation of S into a coarser S needs to account for this

variability to preserve the consistency (discussed below Equation (29)). As a result, a sizable

magnitude of Cg exposes the simplicity of consolidation (grouping every four of the original 601

states in S into one of the 150 consolidated states in S) against data, entailing sizable recovery

inconsistencies (globally across the state space).

To examine these relationships, Panel A of Table 3 reports the point estimates and the sta-

tistical significance of the time-series correlations between the consistency measures (38) and

the degrees of recovered marginal utility inconsistencies. The latter are quantified by the devi-

ations of the minimum and maximum recovered marginal utilities (in the consolidated model)

from the median recovered marginal utilities (in the full model) among those associated with

corresponding original states, |M jmin
−Mjmed |, jmed ∈ jmin, and |M jmax

−Mjmed |, jmed ∈ jmax,

for each date in our sample. The global measure Cg positively and statistically significantly (p-

value < 0.01) correlates with both inconsistency proxies, and the local measure Cj positively

and statistically significantly (p-value < 0.01) correlates with the deviation concerning M jmin
.43

These empirical results provide supporting evidence to the relationships discussed earlier that

42In fact, consistent recovery implies that Cj = 0, ∀j ∈ S.
43The local measure Cjmax

correlates slightly negatively with the deviation concerning M jmax
, but the point esti-

mate is statistically insignificant.
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larger inconsistencies in the recovered risk preferences tend to take place when the consistency

condition is violated more significantly.

Table 3: Variations in recovery inconsistencies

Panel A: Recovered marginal utilities

|M jmin
−Mjmed | |M jmax

−Mjmed |

Cjmin
0.27∗∗∗

(9.75)
Cjmax

-0.01
(-0.49)

Cg 0.24∗∗∗ 0.20∗∗∗

(8.70) (7.13)

Panel B: Recovered transition probabilities, one-month and one-year ahead

|p1; 1 jmin
− p1; 1jmin

| |p1; 1 jmax
− p1; 1jmax

| |p12; 1 jmin
− p12; 1jmin

| |p12; 1 jmax
− p12; 1jmax

|

CP
1 ;1 jmin

0.48∗∗∗

(18.97)
CP
1 ;1 jmax

0.32∗∗∗

(11.73)
CP
12 ;1 jmin

0.33∗∗∗

(12.33)
CP
12 ;1 jmax

0.69∗∗∗

(33.73)

Notes: This table reports the time-series correlations between the consistency measures and degrees of recovery
inconsistencies for every Wednesday from January 5, 2000 to August 30, 2023. The local consistency measure Cj for
marginal utilities is the difference between the maximum and minimum marginal utilities associated with original
states j that belong to jmax or jmin. The global inconsistency measure Cg is the standard deviation of marginal utilities
across all S = 601 states in the full model. The local consistency measure CP

τ ;1 j
for transition probabilities of one-

month (τ = 1) and one-year (τ = 12) horizons is the difference between the maximum and minimum transition
probabilities of corresponding horizons starting from an original state belonging to the current consolidated state 1
to jmax or jmin. t-statistics are reported in parentheses. * indicates significance at the 10% level; **, at the 5% level;
and ***, at the 1% level.

Variable inconsistencies in recovered transition probabilities: Similarly, we analyze the variations

of recovery inconsistencies in transition probabilities with how well the recovery consistency

condition (9) is met in the data. This consistency condition posits identical transition probabil-

ities starting from any original states i, k belonging to a consolidated state j to another consol-

idated state h, or, pih = pkh, ∀i, k ∈ j and j, h ∈ S, for consistent recoveries. Accordingly, we

employ the empirical deviation from these identities to construct a local consistency measure

based on one-month and one-year transition probabilities from the current state to the consol-
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idated state j ∈ {jmax, jmin} as follows

CP
1 ;1 j

≡ max
h∈1

p1;hj−min
h∈1

p1;hj , CP
12; 1 j

≡ max
h∈1

p12;hj−min
h∈1

p12;hj , j ∈ {jmax, jmin} ⊂ S, (39)

where 1denotes the current state in the consolidated model, p1;hj =
∑

j∈j p1;hj , p12;hj =
∑

j∈j p12;hj ,

and {p1;hj} and {p12;hj} are respectively the one-month and one-year recovered transition prob-

abilities between original states h, j ∈ S of the full model.44 The (non-vanishing) magnitude

of measures (39) indicates the presence and severity of recovery inconsistencies for these time

horizons (and at the target state j ∈ {jmin, jmax}). Panel B of Table 3 reports the point esti-

mates and the statistical significance of the time-series correlations between the consistency

measures (39) and the degrees of recovered probability inconsistencies of commensurate hori-

zons. The latter are quantified by the difference between the probabilities (in the consolidated

and full models) of the transitions from the current state to the states jmin and jmax, namely,

|p1; 1 jmin
−
∑

j∈jmin
p1; 1 j |, and |p1; 1 jmax

−
∑

j∈jmax
p1; 1 j | (and similar expressions for the differ-

ence of probabilities for one-year transitions). The point estimates of all correlations are positive

and statistically significant (p-value < 0.01), indicating that larger inconsistencies in recovered

transition probabilities tend to take place when the violation of consistency condition is more

significant. These empirical results hold for both one-month and one-year horizons, lending

supporting evidence to inconsistencies in the recovered probabilities and their model-implied

relationships. Further empirical evidence for variations of recovery inconsistencies with mea-

sures of consistency condition’s violation for the benchmark period is presented in Table A.3

(Appendix A.3).

5 Conclusion

This paper examines the consistency of recovering market beliefs, time preferences, and risk

preferences from asset prices. We identify a fundamental endogeneity issue in the recovery

framework: the required state space specification is unobserved prior to the recovery imple-

mentation. Consequently, different subjective specifications lead to mutually inconsistent re-

covery results unless a strong necessary and sufficient condition holds. This condition ensures

that no information about the underlying market is lost when switching between specifications.

44Note that {p1;hj} (and {p12;hj}) is the (h, j) element of the recovered one-month (and one-year) transition prob-
ability matrix P (and P12) of the full model.
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Furthermore, we show that a finer specification does not guarantee greater consistency. Our

analytical results are derived through a tractable perturbative framework, and our empirical

analysis using option price data across specifications and sample periods documents robust

recovery inconsistencies whose magnitude grows with violations of the consistency condition.

These findings demonstrate that achieving an unambiguous and consistent recovery of market

fundamentals from prices remains a significant challenge.
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Appendices

These appendices provide supporting materials for the paper. Appendix A concerns data, empirical

methodologies, robustness and further empirical results. Appendix B concerns technical derivations and

further theoretical analysis.

A Data, Empirical Methodology and Further Results

We present details concerning option and interest rate data and their processing in Appendix A.1, empir-

ical methodologies in Appendix A.2, further empirical results and analyses in Appendix A.3.

A.1 Data

Our data source is OptionMetrics IvyDB US database, which contains historical data on US listed index,

ETF, and equity options. It also contains other relevant information such as interest rates and index divi-

dend yields. In particular, we focus on options on S&P 500 (SPX) because they are among the most liquid

and actively traded options.

A.1.1 Option Price Data

The sample period in our main empirical analysis is from January 5, 2000 to August 30, 2023, and we

obtain call and put option prices for each Wednesday. If price data is unavailable for a particular Wednes-

day, potentially due to a holiday, we substitute it with the price from the previous trading day. We define

moneyness to be the ratio of strike to spot price and keep only OTM options. We exclude options with the

average best bid and best offer price less than $0.50 or with missing price data. We also limit the options

in our sample to a fixed moneyness domain of m ∈ [0.4, 1.6] and days-to-maturity domain of τ ∈ [20, 730].

A.1.2 Interest Rate and Dividend Yield Data

We obtain both interest rate data and S&P 500 dividend yield data from OptionMetrics.1 However, nei-

ther the interest rate nor the dividend yield data offers a comprehensive coverage of all combinations of

dates and maturities (tenors), which is essential to compute the implied volatilities (IV) for options in our

sample and the Black-Scholes prices for each point on the estimated IV surface.

1In 2024, OptionMetrics started to provide expiration/maturity dates for dividend yield data.
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For each date, we linearly interpolate the interest rates and dividend yields between quoted tenors.

Since the available tenors in the data may fall within the interval of [20, 730], we linearly extrapolate the

data so that we obtain a full coverage of date and tenor pairs. It may be possible that the extrapolated

data turn out to be negative. In such a case, we impose a lower bound of zero. We locally smooth interest

rates and dividend yields so that the term structures do not contain kinks.

A.1.3 Data Processing

In order to apply the put-call parity to translate traded OTM puts into the corresponding ITM calls (which

may not be traded), we would need to compute the implied forward prices for the date and tenor pairs

of OTM puts. We first apply the method proposed by Aït-Sahalia and Lo (1998) and then supplement the

data using the processed dividend yield data from OptionMetrics.

In Aït-Sahalia and Lo (1998), the forward prices are backed out from the put-call parity using the close

to ATM option pairs. To do so, for each combination of date and tenor in our sample, we find pairs of call

and put options that have the same strike price and have moneyness between 0.99 and 1.01. We then

compute the forward price F via the put-call parity

C +Ke−rτ = P + Fe−rτ . (A.1)

There could be multiple implied forward prices for a given pair of date and tenor as we consider a range

of moneyness, albeit a small range. In such a case, we take the average of the implied forward prices. The

dividend yields are then derived from the spot-forward parity.

However, due to data availability, this method does not guarantee that forward prices and dividend

yields exist for all date and tenor pairs. Since dividend yield is crucial for deriving implied volatilities,

we address this issue by incorporating the dividend yield data provided by OptionMetrics, as mentioned

above. After this step, we are able to translate all OTM puts in our sample into ITM calls using the put-call

parity.

To finalize the data for further analyses, such as estimating IV surface, we have to ensure that the

options in our sample do not violate the no-arbitrage restrictions. In particular, call option prices C must

satisfy the price bounds (34) as well as constraints on vertical and butterfly spreads (35). Finally, we back

out the implied volatilities using Black-Scholes formula for each option in our sample.
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A.2 Empirical Methodology

We describe the neural network approach to generate implied volatility surfaces in Appendix A.2.1 and

the associated recovery implementation in Appendix A.2.2.

A.2.1 Neural Network

We follow Ludwig (2015)’s approach of employing neural networks to estimate a stable implied volatility

surface from the option data. Prior to estimating the model parameters in (36), we need to ensure the

stability of the resulting surface at the tenor boundaries and prevent calendar arbitrage. Therefore, for

each date, we augment our sample as follows. To prevent calendar arbitrage, we use the average IV of

ATM calls (those with moneyness between 0.99 and 1.01) to create artificial option data for each grid

point of moneyness between 1.2 and 1.6 and tenors between 10 and 20 days. To stabilize the results at

the tenor boundaries, we keep the first string of options with τ > 730 when processing the raw data, and

extract the first string of options with τ ≥ 20 and repeat it for each grid point of m ∈ [0.9, 1.1] at the tenor

of 10 days.

Next, we compute the implied total variance for each option on a given date in our augmented data

and estimate (36) to obtain the parameters for the implied volatility surface. We obtain the initial pa-

rameter values θ0 of the neural network by following Nguyen and Widrow (1990) and set the number of

neurons (i.e., non-linear basis expansions) to be N = max{10, 10 + ⌊Z⌋} with Z ∼ N (0, 2). We map the

option prices in our sample to implied volatilities using the Black-Scholes formula and follow Foresee

and Hagan (1997) to find the set of model parameters θ = {β0} ∪ {α0i, α1i, α2i, βi}Ni=1 that minimizes the

residual sum of squares

min
θ

RSS(θ) = min
θ

∑
ω(m)(ν̂(m, τ ;θ)− ν(m, τ))2, (A.2)

where ν̂(m, τ ;θ) is the fitted implied total variance (36) given θ and ν(m, τ) is from the data. The weights

ω(m) are given by ϕ(m|1, 0.2)+ϕ(m|1, 0.1), where ϕ(·|µ, σ) is the normal density function with mean µ and

standard deviation σ.

We plug θ0 into the objective function RSS(θ). After initialization, solve (A.2) for the optimal param-

eters via Foresee and Hagan (1997) in the following steps:

1. Calculate the Jacobian matrix J = ∂RRS(θ)

∂θ
and the Hessian matrix H = J′J;

2. Calculate the residual vector e ≡ [
√
ω(m)i(ν̂i(m, τ ;θ)− νi(m, τ)))], where i denotes the ith observa-

tion;
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3. Compute the gradient vector g = 2e′J;

4. Update the parameters θnew = θ− (H+λI)−1g, where I is the identity matrix and λ is the damping

parameter;

5. Evaluate the objective function at θnew;

6. If RSS(θnew) < RSS(θ), update the damping parameter to λnew = λ/v1; otherwise, update it to

λnew = λv2, where v1, v2 > 1;

7. Repeat the previous steps until convergence or the maximum number of iterations is reached.

We train each network for 100 iterations and obtain an IV surface for m ∈ [0.4, 1.6] and τ ∈ [20, 730],

where the grid size of m is chosen to be 0.002, i.e., a total of 601 states. After obtaining a solution θ∗,

we produce the associated implied total variance ν̂(m, τ ;θ∗) and back out the call option prices using the

Black-Scholes formula for all grid points on the surface. Then, we check whether the conditions (34), (35),

as well as the restriction on calendar spread

ν̂(m, τ1;θ
∗) > ν̂(m, τ2;θ

∗) if τ1 > τ2. (A.3)

are satisfied for each of these call prices. If so, we call θ∗ a valid solution to the problem (A.2). We choose

the 5 solutions with lowest residual sum of squares (A.2) out of the 15 valid solutions and take the average

as our estimated IV surface.

A.2.2 Recovery Implementations

We detail the procedure to implement separate recoveries for different subjective specifications. For each

specification, we follow Audrino et al. (2021)’s benchmark approach in employing a regularization pro-

cedure (ridge regression) to solve for a stable one-period AD price matrix and its inverse. We relate (i.e.,

consolidate) observable option price data under different specifications by the LoP and use them as in-

puts to separate recovery implementations and obtain recovery results for respective specifications. In

the difference with the benchmark approach, we do not construct or relate recovery results across differ-

ent specifications by interpolations.

We consider a model with S = 601 states of moneyness and T = 711 tenors (days), i.e., m ∈ [0.4, 1.6]

with tick size of 0.002 and τ ∈ [20, 730]. We name this as the full model. As a baseline, we estimate the

monthly AD price matrix A for each date. Recall that the state price transition (i.e., one-period AD price)

matrices satisfy (3) under the assumptions in Ross (2015).
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To estimate A, we would solve the following S least squares problems

min
A: i≥0

(Aτ+1;: i −AτA: i)
′(Aτ+1;: i −AτA: i), i = 1, . . . , S, (A.4)

where A: i and Aτ+1;: i denote the i-th column of A and Aτ+1, respectively. However, Aτ is often ill-

conditioned, which leads to unstable solutions even with small perturbations in Aτ . Hence, we include

L2 regularization via the ridge regression

min
A: i≥0

(Aτ+1;: i −AτA: i)
′(Aτ+1;: i −AτA: i) + ζA′

: iA: i, i = 1, . . . , S. (A.5)

The key to solving (A.5) is to find the ridge parameter ζ. To do so, we choose ζ > 0 to minimize the

generalized Kullback-Leibler divergence DKL(Aτ∥“Aτ ) between the state prices Aτ implied from the data

and “Aτ generated by the Markov transition model (3),

DKL(Aτ∥“Aτ ) =
∑
j,τ

ñ
Aτ ;ij log

Ç
Aτ ;ij“Aτ ;ij

å
− (Aτ ;ij − “Aτ ;ij)

ô
, (A.6)

where Aτ ;ij and “Aτ ;ij represent state prices paying off in state j with tenor τ , from the perspective of the

current state i.

Specifically, we consider a grid of ζ ∈ (0, 0.3] and for each ζ on the grid, we solve (A.5) and obtain a

transition matrix A(ζ), which depends on ζ. We then compute the corresponding generalized Kullback-

Leibler divergence DKL(Aτ∥“Aτ ; ζ) defined in (A.6), which is minimized at the optimal ridge parameter

ζ∗.2 The AD transition matrix is therefore A(ζ∗), which we then use to identify its dominant eigenspace

(δ(1),x(1,R)) and recover the physical transition probabilities and marginal utilities as follows

δ = δ(1), Mi =
1

x
(1,R)
i

, P = δ−1 Diag(x(1,R))−1 A(ζ∗)Diag(x(1,R)). (A.7)

For the recovery of the consolidated model, we first sum up individual state prices within a consoli-

dated state for a given tenor, using the LoP. As an example, we choose the number of states to be 150 for

the consolidated model, and sum up every 4 states in the full model. For each consolidated state j, we

set the moneyness mj to be the median moneyness of all individual states j ∈ j. Then, we solve for the

optimal ridge parameter ζ
∗

and the corresponding 150 × 150 transition matrix A(ζ
∗
) and subsequently

recover the 150-state transition probability matrix P and marginal utilities M.

As it may require considerable computing power to solve the non-negative ridge regression (A.5) for

2Following Audrino et al. (2021), we add 10−20 to A and “A in (A.6) to avoid dividing by zero.
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a large number of states, Audrino et al. (2021) propose an alternative method of recovering 1201-state

probabilities and marginal utilities. Specifically, instead of estimating a full 1201 × 1201 matrix A, they

reduce the number of states to 150 and estimate a 150× 150 matrix ‹A via (A.5) and the associated 150× 1

dominant eigenvector x̃(1,R) is obtained. After finding out the optimal ridge parameter ζ̃∗, they obtain

the 150-state dominant right eigenvector x̃(1,R) of the matrix ‹A(ζ̃∗). Subsequently, a cubic spline inter-

polation to x̃(1,R) is used to restore to 1201 states. Finally, the recovered 1201-state probabilities ‹P and

marginal utilities M̃ are obtained via (A.7).

A.3 Further Empirical Results

This appendix presents the robustness, replication and validation of methodology, and further empirical

results of recovery inconsistencies concerning 601-state versus 150-state specifications (Appendix A.3.1),

and the recovery implementation under the 1201-state (benchmark) specification (Appendix A.3.2).

A.3.1 Concerning 601-state and 150-state Specifications

In this appendix, we consider the 601-state (full model) versus 150-state (consolidated model) specifica-

tions as in the main text.

Robustness check (using median marginal utility): In Figure A.2 repeats the empirical exercise underlying

Figure 1, but instead focuses on the median marginal utilities of the original states of the full model that

correspond to either M jmin
(Panel A) or M jmax

(Panel B) of the consolidated model. Similar to Figure 1, we

observe that there is a persistent difference between the marginal utilities of the two models, indicating

inconsistencies in the recovered marginal utilities that are significant for the adverse state jmax (of maxi-

mum recovered marginal utility in the consolidated model, Panel B) and for the recent period (from 2014

onward).

Two time-series examples of relative probability differences (37): Panel A of Figure A.1 plots the time se-

ries of the relative probability difference dp 1 jmin
associated with the state jmin (of minimum recovered

marginal utility), and Panel B plots dp 1 jmax
associated with jmax (of maximum recovered marginal util-

ity). Both panels show a non-vanishing relative probability difference for many dates of the sample period

from January 2000 to August 2023, indicating persistent inconsistencies of the recovered transition prob-

abilities. In terms of magnitude, the relative probability difference associated with the transition to the

adverse state jmax in Panel B is significantly larger than that to the good state jmin in Panel A. This pattern

is also observed earlier in Figure 1 for the inconsistencies in recovered marginal utilities. Intuitively, it is

consistent with the fact that adverse states of the underlying market tend to be rarer, they are more elusive
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Figure A.1: Relative probability difference between the consolidated and full models

Notes: This figure plots the time series of relative differences of the one-month recovered transition probabilities
between the (150-state) consolidated and (601-state) full models, starting from the current state to the minimum
(Panel A) and the maximum (Panel B) marginal utility states in the consolidated model. The relative probability

difference is defined as
p 1 j−

∑
j∈j p1j∑

j∈j pij
, where j ∈ S and j ∈ S, and p 1 j and p1j denote the recovered one-month

transition probabilities from the current state of the consolidated and full models, respectively. The sample period is
every Wednesday from January 5, 2000 to August 30, 2023.

to the recovery process. Further empirical evidence for inconsistencies in the recovered probabilities for

the benchmark period is presented in Figures A.4 and A.5.

Validation of methodology (January 5, 2000 – December 26, 2012): Now, we limit our sample period to

the benchmark sample period from January 5, 2000 to December 26, 2012, which consists of 197,771

call options, to validate our recovery implementations with the benchmark literature. Table A.1 shows

the summary statistics of implied volatilities for various moneyness and tenors. The summary statistics

are in line with those reported in Ludwig (2015). For completeness, we also report the risk-neutral and

recovered moments of cross-sectional returns in Table A.2.3

Recovery inconsistencies (January 5, 2000 – December 26, 2012): We examine the recovery consistencies

between the 601-state (full model) and 150-state (consolidated model) specifications for the benchmark

sample period (January 5, 2000 – December 26, 2012). To this end, Figure A.3’s Panel A (resp., Panel

B) plots the time series of minimum (resp., maximum) recovered marginal utilities of the consolidated

model at consolidated states jmin (resp., jmax) against the corresponding minimum and maximum recov-

ered marginal utilities of the full model among original states belonging to jmin (resp., jmax). Figure A.4

3The results in this table are broadly comparable with the corresponding moments reported in Audrino et al.
(2021), who employ 1201-state specification in place of our 601-state specification in Table A.2.
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Figure A.2: Comparison of marginal utilities of the consolidated and full models

Notes: This figure plots the time series of the recovered minimum and maximum marginal utilities of the (150-state)
consolidated model, along with the median marginal utilities among the original states of the (601-state) full model
that correspond to the minimum and maximum marginal utilities states respectively in the consolidated model.
Current state’s marginal utility is normalized to one. The sample period is every Wednesday from January 5, 2000 to
August 30, 2023.

Table A.1: Summary statistics of call options

DITM ITM ATM OTM DOTM
m < 0.90 [0.90, 0.99] (0.99, 1.01) [1.02, 1.10] > 1.10

Panel A: Maturity < 180 days

IV (%) 34.92 22.28 18.72 17.33 21.06
Price 273.79 86.68 39.08 16.66 4.49
N 35,136 23,999 6,423 24,758 13,845

Panel B: Maturity 180 — 365 days

IV (%) 30.94 22.27 20.67 19.16 18.55
Price 353.17 130.38 86.65 54.80 13.57
N 22,563 7,975 1,884 8,007 15,464

Panel C: Maturity > 365 days

IV (%) 28.60 21.78 20.57 19.80 18.14
Price 390.73 164.85 123.99 92.80 28.88
N 15,277 4,939 1,158 4,723 11,620

Notes: This table reports the average implied volatilities (IV) and prices of the call options on S&P 500 in our sample
for different categories of moneyness m and maturities. Our sample contains option data for every Wednesday from
January 5, 2000 to December 26, 2012. Moneyness is defined as the ratio of strike to spot price.

further plots the mean and median of the relative probability difference (37), and Panels A and B of Fig-

ure A.5 provide two time-series examples of probabilities going to the minimum and maximum marginal

8



Table A.2: Summary statistics of risk-neutral and recovered moments

Median Std dev Min 25th 75th Max

Panel A: Risk-neutral moments

Mean (%) −1.70 4.70 −29.69 −4.31 1.80 5.07
Volatility (%) 21.32 8.87 10.44 16.85 26.54 73.88
Skewness −1.22 0.40 −2.71 −1.55 −0.97 −0.47
Kurtosis 7.24 3.32 3.85 5.63 9.61 23.60

Panel B: Recovered moments

Mean (%) 9.80 4.63 −3.82 7.24 13.38 26.87
Volatility (%) 17.60 7.60 9.04 13.63 21.74 66.99
Skewness −0.90 0.24 −1.89 −1.09 −0.75 −0.37
Kurtosis 5.41 1.46 3.74 4.72 6.58 12.46

Notes: This table reports the summary statistics of the risk-neutral and recovered moments of 30-day-to-maturity
cross-sectional returns on S&P 500 for the (601-state) full model. Returns are computed by considering all possible
values of S&P 500 on the grid in the next period. Mean and volatility are annualized and reported as percentages. All
moments are unconditional over the period of January 5, 2000 to December 26, 2012.

utilities states of the consolidated model. Altogether, these plots (Figures A.3, A.4 and A.5) show persis-

tent inconsistencies in both recovered marginal utilities and recovered transition probabilities. These

patterns are similar to Figures 1 and 2 in the main text (which employ data of the entire sample period

from January 5, 2000 – August 30, 2023), indicating the robustness of recovery inconsistencies.
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(a) Minimum marginal utilities of the consolidated
model

2002 2004 2006 2008 2010 2012
10
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10
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10
10

(b) Maximum marginal utilities of the consolidated
model

Figure A.3: Comparison of marginal utilities of the consolidated and full models

Notes: This figure plots the time series of the recovered minimum (M jmin
) and maximum (M jmax

) marginal utilities of
the (150-state) consolidated model, along with the minimum (Mjmin ) and maximum (Mjmin ) marginal utilities among
the original states of the (601-state) full model that correspond to the minimum (jmin ∈ jmin) and maximum (jmax ∈
jmax) marginal utilities states respectively in the consolidated model. Current state’s marginal utility is normalized to
one. The sample period is every Wednesday from January 5, 2000 to December 26, 2012.
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Figure A.4: Relative probability difference between the consolidated and full models

Notes: This figure plots the mean and median of the relative differences of the one-month recovered transition prob-
abilities between the (150-state) consolidated and (601-state) full models, starting from the current state to states in
the consolidated model. Panel A plots the mean of the absolute values of the relative difference, and Panel B plots

the median of the relative difference. The relative probability difference is defined as
p 1 j−

∑
j∈j p1j∑

j∈j pij
, where j ∈ S and

j ∈ S, and p 1 j and p1j denote the recovered one-month transition probabilities from the current state of the con-
solidated and full models, respectively. The sample period is every Wednesday from January 5, 2000 to December 26,
2012.

Variations of recovery inconsistencies (January 5, 2000 – December 26, 2012): We examine the variation

of recovery inconsistencies with measures quantifying violation of the recovery consistency condition for

the benchmark sample period. Panel A (resp., Panel B) of Table A.3 reports the point estimates and the sta-

tistical significance of the time-series correlations between the local and global consistency measures Cj ,

Cg (38) (resp., the one-month and one-year consistency measures CP
1 ;1 j

, CP
12 ;1 j

(39)) and the inconsistency

level of recovered marginal utilities (resp., the inconsistency level of recovered transition probabilities of

commensurate horizons). All but one of these correlation estimates are positive and statistically signifi-

cant (p-value < 0.01), indicating that larger inconsistencies of recovered marginal utilities and transition

probabilities tend to take place when the violation of consistency condition is more significant.4 These

findings for the benchmark sample period are similar to those for the entire sample period reported in

Table 3 in the main text, signifying the robustness of these theory-implied variations of recovery incon-

sistencies in different sample periods.

4The only statistically insignificant point estimate is positive.
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Figure A.5: Relative probability difference between the consolidated and full models

Notes: This figure plots the time series of relative differences of the one-month recovered transition probabilities
between the (150-state) consolidated and (601-state) full models, starting from the current state to the minimum
(Panel A) and the maximum (Panel B) marginal utility states in the consolidated model. The relative probability

difference is defined as
p 1 j−

∑
j∈j p1j∑

j∈j pij
, where j ∈ S and j ∈ S, and p 1 j and p1j denote the recovered one-month

transition probabilities from the current state of the consolidated and full models, respectively. The sample period is
every Wednesday from January 5, 2000 to December 26, 2012.

A.3.2 Concerning 1201-state and 150-state Specifications

In this appendix, for completeness and robustness, we consider the 1201-state (full model) versus 150-

state (consolidated model) specifications of the benchmark literature, and for the entire sample period

January 5, 2000 to August 30, 2023. Unlike the literature, we examine and demonstrate recovery incon-

sistencies by implementing two separate recoveries for these two models, while relating (consolidating)

observable price inputs to these models by the LoP (Section A.2.2). Specifically, for the 1201-state model,

we solve the entire 1201 ridge regressions (A.5) (without lowering the number of states to a coarser model

first and interpolating back to 1201-state model) to obtain the 1201×1201 AD price matrix A. We then re-

cover the time preference as well as the 1201-state marginal utilities and transition probabilities via (A.7).

Table A.4 reports the risk-neutral and recovered moments of cross-sectional returns.

For the 150-state model, we employ the consolidated observable price data and solve (new) 150 ridge

regressions (A.5) to obtain a 150 × 150 AD price matrix A and its dominant eigenvalue and eigenvector

(which characterize the recovered time and risk preferences in the consolidated model).

Figure A.6 plots the time series of minimum and maximum marginal utilities of the consolidated

model and the corresponding minimum and maximum marginal utilities of the full model within the

states jmin and jmax. We observe that the difference between Mjmin
and Mjmax

continues to persist over

11



Table A.3: Variations in recovery inconsistencies

Panel A: Recovered marginal utilities

|M jmin
−Mjmed | |M jmax

−Mjmed |

Cjmin
0.67∗∗∗

(23.59)
Cjmax

0.01
(0.23)

Cg 0.27∗∗∗ 0.85∗∗∗

(7.16) (41.46)

Panel B: Recovered transition probabilities, one-month and one-year ahead

|p1; 1 jmin
− p1; 1jmin

| |p1; 1 jmax
− p1; 1jmax

| |p12; 1 jmin
− p12; 1jmin

| |p12; 1 jmax
− p12; 1jmax

|

CP
1 ;1 jmin

0.54∗∗∗

(16.57)
CP
1 ;1 jmax

0.99∗∗∗

(179.19)
CP
12 ;1 jmin

0.29∗∗∗

(7.73)
CP
12 ;1 jmax

0.69∗∗∗

(24.58)

Notes: This table reports the time-series correlations between the consistency measures and degrees of recovery
inconsistencies for every Wednesday from January 5, 2000 to December 26, 2012. The local consistency measure Cj

for marginal utilities is the difference between the maximum and minimum marginal utilities associated with original
states j that belong to jmax or jmin. The global inconsistency measure Cg is the standard deviation of marginal utilities
across all S = 601 states in the full model. The local consistency measure CP

τ ;1 j
for transition probabilities of one-

month (τ = 1) and one-year (τ = 12) horizons is the difference between the maximum and minimum transition
probabilities of corresponding horizons starting from an original state belonging to the current consolidated state 1
to jmax or jmin. t-statistics are reported in parentheses. * indicates significance at the 10% level; **, at the 5% level;
and ***, at the 1% level.

time. Moreover, M jmin
and M jmax

are outside the range of the corresponding Mjmin
and Mjmax

for most of

the dates.

Figure A.7 further plots the mean and median of relative probability differences (37) concerning 1201-

state and 150-state models. These plots exhibit non-vanishing values persisting over time. These patterns

of marginal utilities and probabilities are similar to Figures 1 and 2 (concerning 601-state and 150-state

models), indicating robust inconsistencies in recovered marginal utilities and transition probabilities

across various specifications.

To examine the variation of the recovery consistencies with measures quantifying the violation of the

recovery consistency condition concerning 1201-state and 150-state models, we estimate the time-series

correlations between consistency measures Cj , Cg (38) and recovered marginal utilities’ inconsistency

12



Table A.4: Summary statistics of risk-neutral and recovered moments

Median Std dev Min 25th 75th Max

Panel A: Risk-neutral moments

Mean (%) −2.11 4.10 −43.05 −3.81 −0.07 5.03
Volatility (%) 19.76 8.29 9.26 15.73 24.72 80.05
Skewness −1.49 0.72 −6.55 −2.06 −1.09 −0.45
Kurtosis 9.10 7.69 3.83 6.34 14.19 14.19

Panel B: Recovered moments

Mean (%) 11.15 5.12 −4.09 7.82 14.74 37.25
Volatility (%) 15.39 7.24 4.99 12.20 20.16 68.01
Skewness −1.09 0.50 −6.08 −1.39 −0.85 −0.36
Kurtosis 6.70 4.17 3.69 5.30 8.88 81.90

Notes: This table reports the summary statistics of the risk-neutral and recovered moments of 30-day-to-maturity
cross-sectional returns on S&P 500 for the 1201-state model. Returns are computed by considering all possible val-
ues of S&P 500 on the grid in the next period. Mean and volatility are annualized and reported as percentages. All
moments are unconditional over the period of January 5, 2000 to August 30, 2023.
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Figure A.6: Comparison of marginal utilities of the consolidated and full models

Notes: This figure plots the time series of the recovered minimum (M jmin
) and maximum (M jmax

) marginal utilities of
the (150-state) consolidated model, along with the minimum (Mjmin ) and maximum (Mjmin ) marginal utilities among
the original states of the (1201-state) model that correspond to the minimum (jmin ∈ jmin) and maximum (jmax ∈
jmax) marginal utilities states respectively in the consolidated model. Current state’s marginal utility is normalized to
one. The sample period is every Wednesday from January 5, 2000 to August 30, 2023.

level, and between measures CP
1 ;1 j

, CP
12 ;1 j

(39) and recovered transition probabilities’ inconsistency level.

Table A.5 presents the point estimates and the statistical significance of these correlations using data of

the entire sample period January 5, 2000 to August 30, 2023. Most of these correlation estimates are pos-

itive and statistically significant (p-value < 0.01), indicating that larger recovery inconsistencies tend to
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take place when the violation of consistency condition is more significant. These findings are similar to

those reported in Table 3 in the main text (concerning 601-state and 150-state specifications), signifying

the robustness of these theory-implied variations of recovery inconsistencies across various specifica-

tions.
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difference
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(b) Median of relative probability difference

Figure A.7: Relative probability difference between the consolidated and full models

Notes: This figure plots the mean and median of the relative differences of the one-month recovered transition prob-
abilities between the (150-state) consolidated and (1201-state) full models, starting from the current state to states
in the consolidated model. Panel A plots the mean of the absolute values of the relative difference, and Panel B plots

the median of the relative difference. The relative probability difference is defined as
p 1 j−

∑
j∈j p1j∑

j∈j pij
, where j ∈ S and

j ∈ S, and p 1 j and p1j denote the recovered one-month transition probabilities from the current state of the consol-
idated and full models, respectively. The sample period is every Wednesday from January 5, 2000 to August 30, 2023.
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Table A.5: Variations in recovery inconsistencies

Panel A: Recovered marginal utilities

|M jmin
−Mjmed | |M jmax

−Mjmed |

Cjmin
0.31∗∗∗

(11.32)
Cjmax

-0.01
(-0.25)

Cg 0.11∗∗∗ 0.01
(3.72) (0.26)

Panel B: Recovered transition probabilities, one-month and one-year ahead

|p1; 1 jmin
− p1; 1jmin

| |p1; 1 jmax
− p1; 1jmax

| |p12; 1 jmin
− p12; 1jmin

| |p12; 1 jmax
− p12; 1jmax

|

CP
1 ;1 jmin

0.61∗∗∗

(26.84)
CP
1 ;1 jmax

0.41∗∗∗

(15.91)
CP
12 ;1 jmin

0.94∗∗∗

(96.73)
CP
12 ;1 jmax

0.37∗∗∗

(13.93)

Notes: This table reports the time -series correlations between the consistency measures and degrees of recovery
inconsistencies for every Wednesday from January 5, 2000 to August 30, 2023. The local consistency measure Cj for
marginal utilities is the difference between the maximum and minimum marginal utilities associated with original
states j that belong to jmax or jmin. The global inconsistency measure Cg is the standard deviation of marginal utilities
across all S = 1201 states in the model. The local consistency measure CP

τ ;1 j
for transition probabilities of one-month

(τ = 1) and one-year (τ = 12) horizons is the difference between the maximum and minimum transition probabilities
of corresponding horizons starting from an original state belonging to the current consolidated state 1 to jmax or jmin.
t-statistics are reported in parentheses. * indicates significance at the 10% level; **, at the 5% level; and ***, at the 1%
level.
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B Technical Derivations and Analysis

We present a derivation of the necessary and sufficient condition for the recovery consistency in Ap-

pendix B.1, further quantitative analysis of recovery inconsistencies using Vandermonde matrix and their

relationship with the spectral gap of AD price matrix in Appendix B.2.

B.1 Qualitative Aspects: Derivations

This appendix presents a proof of Proposition 1. The proof addresses separately whether the current state

is a single or a coupled state.

Case 1 - Single Current State: We consider an original specification of S = {1, · · · , S} and a consolidated

specification S = {1, · · · , j, · · · , S}, which are adopted by two analysts. The mapping (or consolidation

scheme) between the two specifications is as follows: {1} = {1}, {2} = {2}, · · · , {K} = {K}, and {S} =

{K+1, · · · , S}. Suppose that the current state is the single state {1} for the second (consolidated) analyst,

and {1} for the first (original) analyst.

In the first direction of the proof (i.e., proving the sufficient condition), we assume consistent recov-

eries under both specifications. As a result, the following no-arbitrage conditions on observed price data

must be satisfied for the two consistent specifications:

Aτ+1;1i =

S∑
j=1

Aτ ;1jAji, ∀i ∈ S and ∀τ ∈ {1, 2, 3, · · ·} (B.1)

Aτ+1;1 i =
S∑

j=1

Aτ ;1 jAj i, ∀i ∈ S and ∀τ ∈ {1, 2, 3, · · ·} (B.2)

Aτ ;1 i =
∑
j∈i

Aτ ;1j , ∀i ∈ S and ∀τ ∈ {1, 2, 3, · · ·}. (B.3)

The above equation system holds for any horizon τ in the future. However, AD price matrices A and

A contain a fixed number of components to be solved for, resulting in an over-identified equation system.

In particular, we substitute (B.3) into (B.2) and obtain

∑
j∈i

Aτ+1;1j =

S∑
j=1

Ñ∑
k∈j

Aτ ;1k

é
Aj i, ∀i ∈ S and ∀τ ∈ {1, 2, 3, · · ·}. (B.4)

The equation system, (B.1) and (B.4), has an infinite number of equations but onlyS2+(K+1)2 unknowns.
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Hence, in order for the system to have a solution, the components in A must satisfy

Ai j =
∑
j∈j

Aij , ∀{i} = {i} ∈ {1, · · · ,K} and j ∈ S (B.5)

AS j =
∑
j∈j

Aij , ∀i ∈ S and j ∈ S, (B.6)

so that by summing up the equations (B.1) in states i ∈ S we obtain (B.4).

Given that the AD price matrix A of the original specification S satisfies (B.5) and (B.6), the right

eigenvector, x(1,R) =
î
x
(1,R)
1 , · · · , x(1,R)

S

ó′
, associated with the largest and positive eigenvalue δ will satisfy

the following form:



A11 . . . A1K A1,K+1 . . . A1S

...
. . .

...
...

. . .
...

AK1 . . . AKK AK,K+1 . . . AKS

AK+1,1 . . . AK+1,K AK+1,K+1 . . . AK+1,S

...
. . .

...
...

. . .
...

AS1 . . . ASK AS,K+1 . . . ASS





x
(1,R)
1

...

x
(1,R)
K

x
(1,R)
K+1 = x

(1,R)

S
...

x
(1,R)
S = x

(1,R)

S


= δ



x
(1,R)
1

...

x
(1,R)
K

x
(1,R)
K+1 = x

(1,R)

S
...

x
(1,R)
S = x

(1,R)

S


, (B.7)

which implies the marginal utilities satisfy Mi = Mk, for all i and k belonging to the same coupled state.

From the formula of recovered probabilities in (2), it follows that pih = pkh, ∀i, k ∈ j and j, h ∈ S.

Next, we prove the other direction (i.e., proving the necessary condition). We assume that the inputs

of the original specification satisfy Mi = Mk, pih = pkh, ∀i, k ∈ j, and j, h ∈ S. According to (2), the

original AD price matrix A satisfy

∑
j∈j

Aij =
∑
j∈j

Akj , ∀i, k ∈ S and j ∈ S. (B.8)

Since our primary analysis concerns consistency, we take S as the underlying specification in the

current thought experiment. Consequently, we have Aτ+1 = AτA holds for all horizon τ . No-arbitrage

restriction of trade assets gives (B.3). These conditions together with (B.8) imply that Aτ+1 = AτA also

holds for all τ and thus we obtain (B.5) and (B.6). Consequently, employing (2), we have

δ = δ;
M j

Mj
=

M1

M1
, ∀{j} = {j} ∈ {1, · · · ,K};

pt,t+1(1, j) = pt,t+1(1, j), ∀{j} = {j} ∈ {1, · · · ,K}, ∀t; (B.9)
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pt,t+1(1, S) =

S∑
j=K+1

pt,t+1(1, j), ∀t;
MS

M1

=

S∑
j=K+1

pt,t+1(1, j)∑S
i=K+1 pt,t+1(1, i)

Mj

M1
, ∀t.

That is, all consistency conditions are satisfied, establishing the recovery consistency for the case of single

current state.

Case 2 - Coupled current state: We consider an original specification ofS = {1, · · · , S} and a consolidated

specificationS = {1,K + 1, · · · , S − 1, S}, which are adopted by two analysts. The mapping (or consolida-

tion scheme) between the two specifications is as follows: {1} = {1, · · · ,K}, {K + 1} = {K+1}, {K + 2} =

{K + 2}, · · · {S − 1} = {S − 1}, and {S} = {S}. Suppose that the current state is the coupled state {1} for

the second (consolidated) analyst and {1} for the first (original) analyst.

In the first direction of the proof (i.e., proving the sufficient condition), we assume consistent recov-

eries under both specifications. As a result, the same no-arbitrage conditions (B.1)–(B.3) for Case 1 on

observed price data must be satisfied for the two consistent specifications. We again obtain the equation

system (B.1) and (B.4). In order for the system to have a solution, the components in A must satisfy

A1 j =
∑
j∈j

Aij , ∀i ∈ 1 and j ∈ S, (B.10)

Ai j =
∑
j∈j

Aij , ∀{i} = {i} ∈ {K + 1, · · · , S} and j ∈ S, (B.11)

so that by summing up the equations (B.1) in states i ∈ 1 we obtain (B.4).

Given that the AD price matrix A of the original specification S satisfies (B.10) and (B.11), the right

eigenvector, x(1,R) = [x
(1,R)
1 , · · · , x(1,R)

S ]′, associated with the largest and positive eigenvalue δ will satisfy

the following form:



A11 . . . A1K A1,K+1 . . . A1S

...
. . .

...
...

. . .
...

AK1 . . . AKK AK,K+1 . . . AKS

AK+1,1 . . . AK+1,K AK+1,K+1 . . . AK+1,S

...
. . .

...
...

. . .
...

AS1 . . . ASK AS,K+1 . . . ASS





x
(1,R)
1 = x

(1,R)

1

...

x
(1,R)
K = x

(1,R)

1

x
(1,R)
K+1

...

x
(1,R)
S


= δ



x
(1,R)
1 = x

(1,R)

1

...

x
(1,R)
K = x

(1,R)

1

x
(1,R)
K+1

...

x
(1,R)
S


(B.12)

which implies the marginal utilities satisfy Mi = Mk, for all i and k belonging to the same coupled state.

From the formula of recovered probabilities in (2), it follows that pih = pkh, ∀i, k ∈ j and j, h ∈ S.

Next, we prove the other direction (i.e., proving the necessary condition). We assume that the inputs

of the original specification satisfy Mi = Mk, pih = pkh, ∀i, k ∈ j, and j, h ∈ S. According to (2), the
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original AD price matrix A satisfy

∑
j∈j

Aij =
∑
j∈j

Akj , ∀i, k ∈ 1 and j ∈ S. (B.13)

Since our primary analysis concerns consistency, we take S as the underlying specification in the

thought experiment. Consequently, we have Aτ+1 = AτA holds for all horizon τ . No-arbitrage restriction

of traded assets gives (B.3). These conditions together with (B.13) imply that Aτ+1 = AτA also holds for

all τ and thus we obtain (B.10) and (B.11). Consequently, employing (2), we have

δ = δ; pt,t+1(1, 1) =

K∑
j=1

pt,t+1(1, j), ∀t;

pt,t+1(1, j) = pt,t+1(1, j)
1−

∑K
i=1 pt,t+1(1, i)

1−
∑K

i=1
Mi

M1
pt,t+1(1, i)

, ∀{j} = {j} ∈ {K + 1, · · · , S}, ∀t; (B.14)

M j

M1

=
Mj

M1

1−
∑K

i=1 pt,t+1(1, i)

1−
∑K

i=1
Mi

M1
pt,t+1(1, i)

, ∀{j} = {j} ∈ {K + 1, · · · , S}, ∀t.

That is, all consistency conditions are satisfied, implying the recovery consistency for the case of cou-

pled current state. Together with the derivation above for the case of single current state, this establishes

Proposition 1.

B.2 Quantitative Aspects: Derivations

This appendix presents a further quantitative elaboration on the recovery consistency issue. We analyze

the recovery inconsistencies by deriving explicit expressions for the inverses of AD price matrices in Ap-

pendix B.2.1. We discuss the spectral gaps (eigenvalue distributions) of the implied one-period AD price

matrices and their relationships to recovery inconsistencies in Appendix B.2.2.

B.2.1 Inverses of AD Price Matrices and Recovery Inconsistencies

We first relate AD price matrices to Vandermonde matrix, whose inverse is known analytically, before pre-

senting a further quantitative analysis of recovery inconsistencies. Recall from Section 3 that the recovery

inconsistencies originate from the inconsistency of the perturbative component B of the one-period AD

price matrix. As a result, a quantitative analysis of the recovery inconsistencies relies on an explicit inver-

sion of the price matrix A
−1

0τ . In fact, A
−1

0τ and B feature predominantly in the divergence of the recovered

time (18) and risk (22) preferences.

To obtain A
−1

0τ explicitly, we first express every row A0τi,: of A0τ (resp., every row A0τi,: of A0τ ) as
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a linear combination of the unperturbed left eigenvectors {x(k,L)
0 }, k ∈ {1, . . . , S} (resp., {x(k,L)

0 }, k ∈

{1, . . . , S}), because these eigenvectors span the space of 1× S (resp., 1× S) row vectors,

 A0τi,: =
∑S

k=1 γik x
(k,L),

or in matrix form A0τ = ΓXL,

 A0τi,: =
∑S

k=1 γi k x(k,L),

or in matrix form A0τ = Γ X
L
,

(B.15)

where Γ and Γ are matrices of respective coefficients {γik} and {γi k}. Since right and left eigenvectors

are orthonormal, XL
0X

R
0 = 1S×S and X

L

0X
R

0 = 1S×S , the coefficient matrices are Γ = A0τX
R and Γ =

A0τX
R

. Using the recursive construction (3) of the unperturbed τ-period AD matrices A0τ = A0τ−1A0

and A0τ = A0τ−1A0, and the fact that columns of matrices XR
0 and X

R

0 are right eigenvalues of one-

period AD price matrices A0 and A0, we obtain explicit expressions for the coefficient matrices5

Γ =


δ
(1)
0 . . . δ

(S)
0

...
. . .

...î
δ
(1)
0

óS
. . .

î
δ
(S)
0

óS


︸ ︷︷ ︸
≡DS


x
(1,R)
01 . . . 0

...
. . .

...

0 . . . x
(S,R)
01


︸ ︷︷ ︸

≡Diag
Ä
X

(R)
01

ä
= DS︸︷︷︸

S×S

Diag
Ä
X

(R)
01

ä
︸ ︷︷ ︸

S×S

,

Γ =


δ
(1)
0 . . . δ

(S)
0

...
. . .

...î
δ
(1)
0

óS
. . .

[
δ
(S)
0

]S


︸ ︷︷ ︸
≡DS


x
(1,R)
01 . . . 0

...
. . .

...

0 . . . x
(S,R)
01


︸ ︷︷ ︸

≡Diag
(
X

(R)
01

)

= DS︸︷︷︸
S×S

Diag
(
X

(R)

01

)
︸ ︷︷ ︸

S×S

,

(B.16)

where diagonal matrix Diag(X(R)
01 ) (resp., Diag(X

(R)

01 )) contains the first component of the unperturbed

right eigenvectors x
(k,R)
0 , k ∈ {1, . . . , S} (resp., x(k,R)

0 , k ∈ {1, . . . , S}). The k-th row of matrix DS (resp.,

DS) as defined in the above expressions contains the k-th exponent of the eigenvalues {δ(1)0 , . . . , δ
(S)
0 }

(resp., {δ(1)0 , . . . , δ
(S)
0 }). Therefore, DS and DS are Vandermonde matrices (see the digression (B.23) and

(B.24) below), whose inverses, D−1
S and D

−1

S , have known closed-form expressions. Specifically, the ele-

ment (1, i) of the inverse Vandermonde matrix
î
D

−1

S

ó
is (e.g., Man (2017))î

D
−1

S

ó
1i

=

Ä
δ
(1)
0

äS−i
+ a1

Ä
δ
(1)
0

äS−i−1
+ . . .+ aS−i−1

Ä
δ
(1)
0

ä
+ aS−i

δ
(1)
0

∏S
j ̸=1(δ

(1)
0 − δ

(j)
0 )

, i ∈ {1, . . . , S}, (B.17)

5Recall that the dominant unperturbed eigenspaces are consistent, hence δ
(1)
0 = δ

(1)
0 = δ0 as noted below (17).

To arrive at these expressions, recall the convention that the current state is 1. As a result, the first row of observable
price matrix A0τ (3) contains the current one-period AD prices, A0τ ;1: = A01:, the second row A0τ ;2: = A01: A0,
and so on to the S-th row A0τ ;S: = A01: A

S−1
0 . The product A0τ X

R
0 then is composed of various rows of the form

A01: A
k
0 X

R
0 , k ∈ {0, . . . , S − 1}, resulting in (B.16).
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a0 = 1, a1 = −
S∑
j

δ
(j)
0 , a2 =

S∑
j ̸=m

δ
(j)
0 δ

(m)
0 , . . . , aS−1 = (−1)S−1

S∏
j

δ
(j)
0 , ah = 0,∀h < 0. (B.18)

Substituting the expressions (B.16) of Γ and Γ into (B.15) yields the inverse matrices A
−1

0τ = X
R

Γ
−1

=

X
R

Diag
Å

1

X
(R)
01

ã
D

−1

S and A0τ – = Γ– XL = DS– Diag
Ä
X

(R)
01

ä
XL, which transform the divergence (18)

in analysts’ recovered time preferences (in the first order of ε) into

δ
(1)

(ε)− δ(1)(ε) ∼
î
x
(1,L)
0 A

−1

0τ A0τ – − x
(1,L)
0

ó
B+ x

(1,R)
0

=

[
x
(1,L)
0 X

R
Diag

(
1

X
(R)

01

)
D

−1

S DS– Diag
Ä
X

(R)
01

ä
XL − x

(1,L)
0

]
B+ x

(1,R)
0 . (B.19)

Note that the S eigenvalues {δ(k)0 }, ∈ {1, . . . , S}, in matrix DS (B.15) are also in matrix DS , and the S

first components {x(k,R)
01 }, k ∈ {1, . . . , S} in matrix Diag(X

(R)

01 ) are also in matrix Diag(X(R)
01 ) because

the unperturbed component is consistent by construction. The cancellation of these quantities in (B.19)

yields an explicit decomposition for the divergence in the recovered time preferences6

δ
(1)

(ε)− δ(1)(ε) ∼
S∑

k=S+1

Ñ
S∑

i=1

î
D

−1

S

ó
1i

î
δ
(k)
0

ói x
(k,R)
01

x
(1,R)
01

é
︸ ︷︷ ︸

≡C1k

x
(k,L)
0 B+ x

(1,R)
0

=

S∑
k=S+1

C1k x
(k,L)
0 B+ x

(1,R)
0 , (B.20)

where
î
D

−1

S

ó
1i

is the element (1, i) of the inverse Vandermonde matrix
î
D

−1

S

ó
(B.17).

Compared to the qualitative expression (18), the explicit decomposition (B.20) offers deeper quanti-

tative insights into factors driving the inconsistencies in the recovered time preferences. First, only the

couplings between the dominant eigenvector x
(1,R)
0 and extra eigenvectors x

(k,L)
0 , k ∈ {S + 1, . . . , S},

contribute to the inconsistencies. This is because the couplings between the dominant and the lower

eigenvectors x
(k,L)
0 , k ∈ {1, . . . , S}, are present and common in the recovery results for both original (S)

and consolidated (S) specifications, hence are canceled out in the divergence of the two recovery results

(Footnote 6). In the special case of consistent perturbative components, x(k,L)
0 B+ = 0 for every (extra)

state k ∈ {S + 1, . . . , S}, the couplings with the extra eigenvectors x
(k,L)
0 vanish and the recovery consis-

6 Because the S × S matrix DS– is obtained by dropping (S − S) extra rows (not needed for the recovery in S)
of the S × S matrix DS , the matrix product D

−1

S DS– can be separated into two blocks. The left block is the identity
matrix 1S×S that helps to cancel term x

(1,L)
0 in (B.19). The remaining (right) block retains the last (S −S) columns of

matrix DS . Further, the orthonormality between right and left eigenvectors implies x
(1,L)
0 X

R
= (1, 0, . . . , 0) which

retains only the first row of D
−1

S in the resulting divergence (B.20).
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tency is preserved, δ
(1)

(ε) = δ(1)(ε).

Second, the couplings between the dominant eigenvector and extra eigenvectors {x(k,L)
0 } are scaled

by corresponding factors {C1k}, k ∈ {S + 1, . . . , S} in the divergence (B.20). Being linear combina-

tions of the elements (B.17) of the inverse Vandermonde matrix, these factors are explicit and shed light

on how recovery inconsistencies vary with analyst’s subjective specification S. Elements
{î

D
−1

S

ó
1i

}
,

i ∈ {1, . . . , S}, are rational functions of the eigenvalues {δ(j)0 }, j ∈ {1, . . . , S}, so are the scaling factors

{C1k}, k ∈ {S + 1, . . . , S}. For a finer subjective specification S, i.e. a larger number of coupled states

S, the denominators of D
−1

S ’s (and the scaling factors) are polynomials of higher orders in the eigenval-

ues
∏S

j ̸=1(δ
(1)
0 − δ

(j)
0 ). As a result, when the eigenvalues of the underlying one-period AD price matrix

A0 are distributed closely (i.e., a dense spectrum or small spectral gap), a finer specification S may be

associated with larger scaling factors (i.e., rational functions with larger numbers of poles). We note that

a partial fraction decomposition does not mitigate the issue that the magnitudes of the scaling factors, or

the degree and number of poles of the denominators of D
−1

S ’s and {C1k}, increase with a finer S (a larger

S) when the eigenvalues are similar. To see this in an analogous example, note that the partial fraction

decomposition generates the identity,

1Ä
x− δ

(2)
0

ä Ä
x− δ

(3)
0

ä =
a

x− δ
(2)
0

+
b

x− δ
(3)
0

, with: a =
1

δ(3) − δ(2)
, b =

1

δ(2) − δ(3)
. (B.21)

When x = δ
(1)
0 in this example, the identity becomes

1Ä
δ
(1)
0 − δ

(2)
0

ä Ä
δ
(1)
0 − δ

(3)
0

ä =
1Ä

δ
(3)
0 − δ

(2)
0

ä Ä
δ
(1)
0 − δ

(2)
0

ä +
1Ä

δ
(2)
0 − δ

(3)
0

ä Ä
δ
(1)
0 − δ

(3)
0

ä . (B.22)

That is, all terms on both sides of this equality are of the same order, each has two poles. In the general

case of inconsistent perturbative components, the couplings x(k,L)
0 B+ x

(1,R)
0 , k ∈ {S+1, . . . , S}, are non-

zero (and unconstrained by the consistency requirement). When scaled by larger factors {C1k} associated

with a finer subjective specification S, these couplings may produce a larger divergence (B.20), i.e., larger

recovery inconsistencies.

A comparison of the divergences in the recovered risk preferences’ loadings (22) and in the recovered

time preferences (18) indicates that an explicit expression for the former can be obtained in an identical

procedure, i.e., replacing C1k in (B.20) by Chk, and
î
D

−1

S

ó
1i

in (B.17) by
î
D

−1

S

ó
hi

, where h ∈ {2, . . . , S}.

The resulting explicit expressions for the recovered risk preferences then implicate similar quantitative

findings on the sources driving the inconsistencies in the recovered marginal utilities.

In summary, the analysts’ recovery results remain divergent as long as their recovery specifications
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remain inconsistent with each other. The perturbative setup demonstrates that the divergence between

an analyst’s recovery results and the underlying is scaled by rational functions of the AD price matrix’s

eigenvalues. The analyst’s finer subjective specification suppresses the degree of these rational functions,

which is the difference between the degrees of the polynomials in the numerator and denominator of a

rational function. As a result, when the eigenvalues are distributed closely, a finer subjective specification

may actually increase the divergence, hence the inconsistencies, of the recovery results. This is because a

dense spectrum of the AD price matrix implies that higher eigenspaces perturb and distort the dominant

(recovery) one more strongly.

A digression on the Vandermonde matrix: To relate the Vandermonde matrix to the recovery setting, we

recall a well-known application of this matrix (and its inverse). This application concerns the exact fitting

of a (n − 1)−degree polynomial f(x) that passes through n given points {(x0, y0) . . . (xn−1, yn−1)}. The

fitting “recovers" n unknown coefficients {a0, . . . , an−1} of polynomial f(x) via an equation system

Vandermonde system:



a0 + a1x0 + a2x
2
0 + . . .+ an1

xn−1
0 = y0,

a0 + a1x1 + a2x
2
1 + . . .+ an1

xn−1
1 = y1,

...

a0 + a1xn−1 + a2x
2
n−1 + . . .+ an1x

n−1
n−1 = yn−1,

(B.23)

or in matrix form

[a0 a1 . . . an−1]


1 1 . . . 1

x0 x1 . . . xn−1

...
...

. . .
...

xn−1
0 xn−1

1 . . . xn−1
n−1


︸ ︷︷ ︸

Vandermonde matrix

= [y0 y1 . . . yn−1] . (B.24)

From this follows a unique solution for the coefficients, {ak}, k ∈ {0, . . . , n − 1} from x’s and y’s coordi-

nates.

A change of notation relates this equation system to our recovery setting (B.16). After replacing S with

n, and δ
(k+1)
0 by xk (for k ∈ {0, . . . , S − 1}), the matrix product DS Diag

Å
1

δ
(1)
0

, 1

δ
(2)
0

, . . . , 1

δ
(S)
0

ã
(where S × S

matrix DS is given (B.16)) becomes the n×n Vandermonde matrix on the LHS of the system (B.24). Since

the analytical expression for the inverse of the Vandermonde matrix is known, the analytical expression

for the inverse matrix [DS ]
−1 is also known. The same holds for DS in (B.16), which yields explicit expres-

sions for its elements
î
D

−1

S

ó
1i

(B.17).
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B.2.2 Spectral Gaps of AD Price Matrices

Consider the eigenproblem of AD price matrices A(ε) and A(ε) (14) in the perturbative setup,

A(ε)x(k,R)(ε) = δ(k)(ε)x(k,R)(ε), with


A(ε) = A0 + εB

δ(k)(ε) = δ
(k)
0 + ε∆δ(k),

x(k,R)(ε) = x
(k,R)
0 + ε∆x(k,R),

k ∈ {1, . . . , S}, (B.25)

and

A(ε) x(k,R)(ε) = δ
(k)

(ε) x(k,R)(ε), with


A(ε) = A0 + εB

δ
(k)

(ε) = δ
(k)

0 + ε∆δ
(k)

,

x(k)(ε) = x
(k)
0 + ε∆x(k),

k ∈ {1, . . . , S}, (B.26)

Substituting the perturbative expansions in the second part into the first part of (B.25), matching terms

linear in ε, multiplying to the left of the resulting equation by the unperturbed k-th left (row) eigenvector

x
(k,L)
0 , and employing the orthonormality between left and right eigenvectors, yield the eigenvalues (i.e.,

spectrum) of the AD matrix A(ε) associated with the original specification (and similarly for the spectrum

of the AD matrix A(ε)),

 δ(k)(ε) = δ
(k)
0 + εx

(k,L)
0 Bx

(k,R)
0 ,

k ∈ {1, . . . , S},

 δ
(k)

(ε) = δ
(k)

0 + ε x
(k,L)
0 B x

(k,R)
0 ,

k ∈ {1, . . . , S}.
(B.27)

Since the unperturbed components of the perturbative setup (12) are consistent, the two spectra share S

unperturbed components of their eigenvalues

δ
(k)
0 = δ

(k)

0 , ∀k ∈ {1, . . . , S}. (B.28)

The distances from the k-th eigenvalue to the dominant (first) eigenvalue (or, spectral gaps) in the original

and consolidated spectra are

δ(k)(ε)− δ(1)(ε) =
î
δ
(k)
0 − δ

(1)
0

ó
+ ε
î
x
(k,L)
0 B x

(k,R)
0 − x

(1,L)
0 B x

(1,R)
0

ó
, ∀k ∈ {1, . . . , S},

δ
(k)

(ε)− δ
(1)

(ε) =
[
δ
(k)

0 − δ
(1)

0

]
+ ε
î
x
(k,L)
0 B x

(k,R)
0 − x

(1,L)
0 B x

(1,R)
0

ó
, ∀k ∈ {1, . . . , S}.

Since these spectral gaps share identical unperturbed components (B.28) for k ∈ {1, . . . , S}, their relative

spectral gaps for these eigenvalues are linear in ε. Up to the multiplicative constant of ε, the relative gaps
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are7

RG(k) ≡
[
δ
(k)

(ε)− δ
(1)

(ε)
]
−
î
δ(k)(ε)− δ(1)(ε)

ó
∼
Ä
x
(k,L)
0 B x

(k,R)
0 − x

(1,L)
0 B x

(1,R)
0

ä
−
Ä
x
(k,L)
0 B x

(k,R)
0 − x

(1,L)
0 B x

(1,R)
0

ä
(B.29)

=
Ä
x
(k,L)
0 B x

(k,R)
0 − x

(k,L)
0 B x

(k,R)
0

ä
−
Ä
x
(1,L)
0 B x

(1,R)
0 − x

(1,L)
0 B x

(1,R)
0

ä
, k ∈ {2, . . . , S}.

We now employ the general identity B = A
−1

0τ A0τ – B+ (15) and the consistency property of the unper-

turbed right eigenvectors x(k,R)
0 and x

(k,R)
0 , which share relevant identical components, to reduce Bx

(k,R)
0

to B+ x
(k,R)
0 , for k ∈ {2, . . . , S}, as in (11). As a result, up to the multiplicative constant of ε, the relative

spectral gaps of AD price matrices A and A can be written (similar to (18))

RG(k) ≡
[
δ
(k)

(ε)− δ
(1)

(ε)
]
−
î
δ(k)(ε)− δ(1)(ε)

ó
∼
î
x
(k,L)
0 A

−1

0τ A0τ – − x
(k,L)
0

ó
︸ ︷︷ ︸

unperturbed & consistent factor

B+ x
(k,R)
0︸ ︷︷ ︸

perturbative factor

−
î
x
(1,L)
0 A

−1

0τ A0τ – − x
(1,L)
0

ó
︸ ︷︷ ︸

unperturbed & consistent factor

B+ x
(1,R)
0︸ ︷︷ ︸

perturbative factor

, (B.30)

for all k ∈ {2, . . . , S}. Two observations concerning these relative spectral gaps are in order. While the

first shows that both recovery inconsistencies and non-vanishing relative spectral gaps originate from

different retentions of information in two inconsistent specifications, the second shows the difference

between recovery inconsistencies and relative spectral gaps.

First observation: In the special case where the perturbative components B and B of AD price matrices

are consistent, we have A0τ –B+ = A0τB, and x
(k,L)
0 B+ = x

(k,L)
0 B, for all k ∈ {1, . . . , S}. As a result,

both terms on the RHS of (B.30) vanish, reducing to relative spectral gaps RG(k) = 0, ∀k ∈ {1, . . . , S} as

information about the underlying market model is preserved by consistent perturbative components B

and B. In the general case where the perturbative components of AD price matrices are not consistent

with each other, B and B are not constrained by consistency conditions. Their exogeneity imply that

both terms on the RHS of (B.30) do not vanish in general. Furthermore, due to this exogeneity, a finer

consolidated specification S does not unambiguously increase or decrease the correlation between the

consistent and inconsistent factors in each of the two terms on the RHS of (B.30). Intuitively, a finer S

does not necessarily reduce the relative spectral gaps RG(k), k ∈ {2, . . . , S}, because information about

the underlying market model is not preserved by inconsistent perturbative components B and B.

Second observation: We examine and compare inconsistencies in recovered marginal utilities (21) ver-

sus relative spectral gaps of AD price matrices (B.30). Since the unperturbed eigenvalues {δ(k)0 }, k ∈

7That is, the multiplicative constant ε is omitted from the right-hand side of (B.29) for notational and exposition
simplicities.
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{1, . . . , S}, and {δ(k)0 }, k ∈ {1, . . . , S}, appear explicitly in (21), an important factor to the recovery in-

consistencies of marginal utilities is the unpaired terms among the two sums in (21) (indexed by k ∈

{S + 1, . . . , S}, associated with the original specification). Whereas, since the relative spectral gaps (B.30)

concern the comparison of the spectral gaps of AD price matrices, they are about the paired eigenval-

ues (indexed by k ∈ {1, . . . , S}), which differ only in their perturbative components (see (B.28)). As a

result, a finer specification affects the recovery inconsistencies in marginal utilities in two channels: (i)

the divergence of the paired numerators x(k,L)
0 Bx

(1,R)
0 and x

(k,L)
0 Bx

(1,R)
0 , k ∈ {1, . . . , S} in (21) due to in-

consistent perturbative components of AD price matrices, and (ii) the change in the number of unpaired

terms (unpaired contributions) among the two sums in (21). In contrast, a finer specification affects the

relative spectral gaps of AD price matrices (B.30) in the first channel as discussed in the first observation

above.
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