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Abstract

Prominent covariance-based factor analysis identifies common volatile risk factors but

not their risk premia, leading to a possible over-fitting of risks that have low prices. Moment

fusing presents a general, highly flexible and novel pricing framework that incorporates the

risk prices into the covariance-based identification of risk factors. First, a return transforma-

tion is constructed and informed by the mean of original returns so that the transformed re-

turn volatilities are proportional to the Sharpe ratios of original assets. Then, a factor analysis

is performed on the transformed returns, both with and without further pricing restrictions,

to identify systematic moment-fusing factors. Because these factors characterize the prin-

cipal covariation of original Sharpe ratios, they price original asset returns. Empirically, the

moment-fusing factors significantly outperform known benchmark models in pricing both

FX and equity portfolios out of sample.
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1 Introduction

That financial assets earn a risk premium as compensation for their exposures to non-diversifiable

risks in the market has always been an important guiding principle for asset pricing research.

Although the fundamental mean-variance efficiency framework conceptually elucidates this

risk-return tradeoff, given the sheer number of traded assets, it is challenging to systematically

identify important common risk factors that price these asset returns in the cross section and

out of sample. While the identification of common risk factors concerns mostly the covariance

structure of asset returns, and hence, is supported by the covariance-based factor analysis, this

prominent analysis framework is oblivious to the first moment (i.e., risk premium) of factors. As

a result, identified common risk factors may have insignificant risk premium and factor prices

(i.e., Sharpe ratios), giving rise to a poor performance of pricing models constructed from these

factors.

The current paper introduces a novel approach to bridge this gap between employing pow-

erful covariance-based factor analysis and identifying common risk factors of significant factor

prices and pricing performances. The approach has two stages and is intuitive. In the first stage,

we construct a transformation of asset returns whose second moments (variances and covari-

ances) incorporate information about the first and higher moments (mean returns and Sharpe

ratios) of the original assets. In the second stage, we implement a covariance-based principal

factor analysis (PCA) on the transformed returns to obtain risk factors whose prices are now in-

formed by the risk premium and Sharpe ratios of original assets. The framework preserves the

elegance and power of the PCA methodology. Namely, the constructed principal factors are mu-

tually orthogonal and delineated in terms of their explanation power of the transformed returns’

(i.e., the original Sharpe ratios’) covariation. Since the original and transformed asset returns are

equivalent bases of the same return space, the constructed pricing factors pertain to the same

fundamental pricing model of interest that governs financial asset returns.

We refer to this intuitive approach to construct informed pricing factors broadly as moment

fusing, which offers both flexibility and specificity for the constructed factors. While all moment-

fusing constructions share the basic feature that means (or other moments) of the original asset

returns are fused into the covariance structure of the transformed returns before a factor analysis

is performed on the transformed returns, these constructions differ in their specific fusing ob-

jective and procedure. Importantly, the moment fusing constructions are highly flexible. They
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can be combined with each others or extended with prominent pricing restrictions recently pro-

posed in the literature. Empirically, we demonstrate the pricing out-performance of moment-

fusing factors and their extended versions (those further disciplined by pricing restrictions) in

both foreign exchange (FX) and equity markets, and out of sample.

The current paper considers two basic moment-fusing constructions, referred hereafter to

as the Sharpe ratio PCA (SR-PCA) and the inverse Sharpe ratio PCA (ISR-PCA), and their combi-

nations and extensions. The SR-PCA starts with scaling asset returns so that the variances of the

transformed returns equal the SRs of the corresponding original returns. As a result of this oper-

ation, the mean of a transformed return in SR-PCA also scales as a power function of the Sharpe

ratio (SR) of the respective original return. A covariance-based factor analysis implemented on

the SR-PCA transformed returns then identifies (and prioritizes) principal factors whose volatil-

ities reflect (and prioritize) high SRs of the original returns. The ISR-PCA starts with scaling asset

returns so that all transformed mean returns are identical. As a result of this control (i.e., homog-

enizing) of the first moment of returns, the volatility of a transformed return in ISR-PCA equals

the inverse SR of the respective original return. A factor analysis implemented on the ISR-PCA

transformed returns then identifies principal factors whose volatilities reflect the inverse SRs of

the original returns. Accordingly, this intuition indicates that a reverse eigenvalue ranking for

ISR-PCA identifies and prioritizes high SRs of the original returns.

The difference between the moment-fusing factors obtained in SR-PCA and ISR-PCA offers

an improvement for the maximum attainable SRs (via diversification) for models combining

these two sets of factors. Our empirical analysis examines both equally and optimally weighted

combinations of SR-PCA and ISR-PCA factors. We extend the moment-fusing constructions fur-

ther by imposing pricing restrictions, which are found important by recent literature in iden-

tifying factors of high prices but low covariation-explaining powers.1 For robustness, we dy-

namically train the extended moment-fusing models to optimize the weights placed on pricing

restrictions as well as those placed on different (SR-PCA and ISR-PCA) components.

By design, the moment-fusing constructions aim to deliver factors of significant Sharpe ra-

tios both in and out of sample via a return transformation. This focus is motivated by a rota-

tional invariance property of the Sharpe ratios of the principal components (or, the principal

factor prices). Namely, the vectors of principal factor prices obtained in all equivalent (original

1In general, these pricing restrictions discipline the deviations between mean excess returns and model-implied
risk premia.
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and transformed) return bases are related by simple rotations (Proposition 1). This invariance

property places a bound on Sharpe ratio magnitudes, differentiating them from the mean or

volatility of returns, which are scalable by a change of return basis (e.g., leveraging). When only

a few leading factors can be retained (due to large data and dimensionality reduction require-

ment), the moment-fusing framework prioritizes factors of high prices because the omitted SRs

are guaranteed to be small by the SR invariance bound. The over-fitting concern of the fac-

tor prices is addressed by a combination of pricing restrictions, in-sample training of optimal

weights, out-of-sample pricing measurements, and the preserved factor analysis methodology.

Our empirical analysis evaluates the in-sample (IS) and out-of-sample (OOS) pricing perfor-

mance of moment-fusing constructions and related pricing factor models using FX and equity

data and 4 standard pricing measures.2 The analysis of the FX market employs the most actively

traded currencies of 11 advanced economies and presents results for 4 different representative

numeraire currencies (namely, the currency denominations of the US, Japan, Australia, and UK).

The out-performance of the moment-fusing pricing models is robust to choices of numeraire

currencies. The empirical analysis using FX data offers two advantages. First, the observable

interest rate differentials present a well-known proxy for the currency mean returns as widely

documented in the currency carry trade literature. This observable proxy can be used to in-

form the construction of the moment-fusing FX factors. Second, the change of the numeraire

currency allows to assess similar moment-fusing constructions in different denomination per-

spectives. We find that the pricing performance of the two prominent FX benchmark factors, the

Dollar (or, RX) and the carry trade long-short (or, HML) factors that have been widely studied for

the USD denomination in the literature, varies significantly with currency denominations. The

moment-fusing and related factors offer significant OOS out-performance consistently across

all considered numeraire currencies. Specifically, the annualized OOS maximum attainable SRs

obtained by the extended moment fusing with two retained factors are 0.28, 0.61, 0.49, and 0.61

in the numeraire currencies of USD, JPY, AUD, and GBP, and respectively are 0.09, 0.32, 0.18, and

0.27 for the benchmark model.

The analysis of the equity market employs 3 data sets, namely, the 74 and 370 extreme-decile

anomaly portfolios and Fama-French 25 size and book-to-market double sorted portfolios. We

use the sampled moments of these original portfolios to inform (i.e., fuse) the transformation of

2Four pricing measures are: the maximum attainable Sharpe ratio, root-mean-square pricing error, Gibbons-
Ross-Shanken (GRS) test statistic, and percentage of unexplained (idiosyncratic) return variation.
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returns. We then implement a factor analysis on the transformed returns to construct moment-

fusing factors and also extend them with pricing restrictions (whose weights are dynamically

trained). The benchmark model for the equity market employs the factor analysis and pricing

restrictions (also dynamically trained) but without moment fusing. We retain either 3 or 5 fac-

tors in every model. For all retained factor configurations and data sets, the moment-fusing and

extended factors either out-perform or perform equally well OOS as the benchmark model, with

one exception. The exception concerns the Fama-French 25 portfolios priced by the 5-factor

model, in which the monthly OOS maximum attainable SR is 0.28 for the extended moment-

fusing model and 0.34 for the benchmark model. In summary, these empirical results demon-

strate that the moment-fusing factor constructions extended by pricing restrictions consistently

offer OOS pricing improvements for both FX and equity markets.

Related Literature: Our brief discussion cannot adequately summarize the enormous and ex-

pansive factor pricing literature. Closest to our paper is Lettau and Pelger (2020), who incor-

porate the first moment of asset returns into PCA by adding pricing restrictions. These restric-

tions penalize the cross-sectional pricing errors of the original returns and formulate the Risk

Premium-PCA (RP-PCA) pricing model. Moment-fusing constructions instead operate on the

transformed (i.e., fused) returns. The moment-fusing factors improve significantly by further

incorporating Lettau and Pelger (2020)’s pricing restrictions. The moment-fusing framework is

general and also helps to identify pricing factors in the FX market, in which PC factors have been

documented and related to prominent currency strategies in the USD denomination Lustig et al.

(2011). Our paper enriches the literature on pricing currency risks by identifying new moment-

fusing FX factors and their pricing performance in various currency denominations. In a broader

perspective, this paper is related to the literature on uncovering weak factors in empirical as-

set pricing using high-dimensional methods, particularly those based on principal component

analysis. PCA has traditionally been effective at summarizing information from a large cross-

section of test assets Connor and Korajczyk (1986). However, the standard PCA faces limitations

in detecting weak factors due to their small loadings on the leading PCs. As a result, the stan-

dard PCA may miss the risks or characteristics that are important for asset pricing but impact

only certain test assets, especially when market is populated by numerous, possibly redundant,

assets and feature a zoo of factors Cochrane (2011), Harvey et al. (2016), Feng et al. (2020). Recent

studies have developed PCA-based extensions to elucidate and address these limitations. Kozak

et al. (2018) show that only a small number of principal components are sufficient to capture
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the pricing information embedded in a large cross-section of characteristics, Kelly et al. (2019)

incorporate observable characteristics into PCA as instruments to identify latent pricing factors,

Giglio and Xiu (2021) use PCA to estimate factor risk premia and mitigate omitted-variable bias

when many relevant factors must be controlled for. Fan et al. (2021) propose a two-step smooth-

ing approach that augments PCA with additional covariates common to all individuals, enhanc-

ing explanatory power—particularly in the presence of fat-tailed variables. Huang et al. (2022)

introduce a “scaled PCA” that weights predictors by their predictive slopes on the target vari-

able, thereby emphasizing variables with stronger forecasting power. Most recently, Giglio et al.

(2025) argue that weak factors are often missed due to the choice of test assets, and propose a

supervised PCA method that selects test assets with high loadings on the factors of interest. Mo-

ment fusing aims to identify weak factors by first strengthening these factors in an equivalent

and informed basis of the transformed returns.

The paper is organized as follows. Section 2 introduces the basic moment-fusing ideas and

demonstrates a rotational invariance for the Sharpe ratios of PC factors. Section 3 formalizes the

moment-fusing constructions and extends these constructions by incorporating pricing restric-

tions. Section 4 presents the empirical analysis of the moment-fusing constructions using FX

data and Section 5 using equity data. Section 6 concludes. Appendices provide further details

on empirical implementations and technical derivations.

2 Market Setup and Illustrations

This section sets the stage for the moment fusing approach applied on traded asset returns.

Section 2.1 introduces a market setup of generic traded asset returns and notations. Section

2.2 presents a Sharpe ratio rotational invariance result and simple illustrations motivating the

subsequent moment-fusing framework.

2.1 Market Setup and Notations

Setup: We model a generic arbitrage-free and frictionless financial market in a discrete-time

setting with T periods and T + 1 dates indexed by t ∈ {0, . . . , T}, which consists of a money

market account (i.e., risk-free bond) B0 and N non-redundant generic risky assets {Xn}Nn=1. In

our subsequent empirical analysis of the moment-fusing framework, risky assets are currency
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strategies (Section 4) and equity portfolios (Section 5). For the holding period from t to t+ 1, let

the bond’s return and risky assets’ excess returns respectively be

B0t+1 = r, Xnt+1 = µxn + σ′
xnεxt+1, n ∈ {1, . . . , N}, t ∈ {0, . . . , T − 1}, (1)

where r denotes the short-term risk-free rate, vector εxt+1 of uncorrelated standard normal shocks

represents various risks impacting asset returns, scalar µxn and vector σxn respectively denote

the (excess) mean and volatilities of n-th risky asset return. In general these moments can be

time-varying. For notational and exposition simplicities, we omit their time variation and time

index.3 Throughout, Ã indicates a demeaned quantity, A′ a transposed quantity, |v| the magni-

tude of a vector v, and all returns are in excess of the risk-free rate unless otherwise explicitly

stated.

Transformed asset returns: Given an arbitrage-free and frictionless financial market of N + 1

original assets {B0, Xn}Nn=1, any set ofN non-redundant traded portfolios and the bond {B0, Yn}Nn=1

constitutes an equivalent asset basis representing the same financial market. This flexibility en-

ables constructions of new asset bases that retain certain characteristics of the original one with-

out altering the return space or the underlying model. We generically refer an equivalent asset

basis (and its returns) and a transformed asset basis (and transformed asset returns).

One simple set of transformed assets concerns a pure leverage operation, in which each Yn is

a portfolio of the bond (with weight 1− κn) and only the respective original risky asset Xn (with

weight κn). The excess returns of these transformed assets are,4

Ynt+1(κn) = κnXnt+1 = κnµxn︸ ︷︷ ︸
=µyn

+ κnσ
′
xnεxt+1︸ ︷︷ ︸

=σ′
ynεyt+1

, n ∈ {1, . . . , N}, κn ∈ R. (2)

It is important to observe that the linearly scaled excess return κnXnt+1 (2) remains a traded

excess return, has an identical SR, and perfectly correlates with the original excess return Xnt+1.

That is, Ynt+1(κn) and Xnt+1 characterize the same risk for all non-zero κn ∈ R. More generally,

linear combinations of traded excess returns YT×N = XT×NSN×N (where S is a full-rank matrix

and X and Y contain the time series of original and transformed returns in their columns) are

3The moment-fusing framework is flexible and can also incorporate (i.e., fuse) the time-varying characteristics of
the original asset return moments into the construction of the transformed asset returns.

4Recall that Xn denotes the excess return, so Xn + B0 is the full return, of the risky asset Xn. The full return of a
portfolio of the bond (with weight 1− κn) and Xn (with weight κn) then is (1− κn)B0 + κn(Xn +B0) = B0 + κnXn.
As a result, the portfolio’s excess return is κnXn, implying (2).
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also traded excess returns. That is, in a frictionless financial market, return transformations

can flexibly alter the covariance structure of asset returns without changing the return space

or the underlying pricing model. As leading factor analysis models such as PCA center on the

return covariance structure, the observations above indicate that return transformations have

profound impacts on this covariance-based analysis and can help to construct important pricing

factors. As an application, we employ return transformations in PCA to establish a SR rotational

invariance property of PCs.

Sharpe ratio rotational invariance: To analyze the impacts of return transformations on PCA,

we consider any two equivalent (original and transformed) return bases, ({B0, Xn}Nn=1 and {B0, Yn}Nn=1)

that are related by a N ×N matrix A of full rank YT×N = XT×NSN×N . We implement PCA on the

original and transformed bases by diagonalizing respective covariance matrices, 1
T W

′
x
‹X ′‹XWx =

Diag (λx1, . . . , λxN ) and 1
T W

′
y
‹Y ′‹Y Wy = Diag (λy1, . . . , λyN ), where W ’s are N × N rotation ma-

trices, W ′
xWx = WxW

′
x = 1N×N and W ′

yWy = WyW
′
y = 1N×N , and Diag ({θn}) denotes the

diagonal matrix with diagonal entries {θn}. Original and transformed sets of principal compo-

nents (PCs) are columns of T × N matrices Πx = XWx and Πy = YWy respectively. Evidently,

PCs are linear combinations of traded assets. Hence, PCs are also traded and constitute another

two orthogonal bases ({B0,Πxn}Nn=1 and {B0,Πyn}Nn=1) of the return space as observed earlier.5

To relate original and transformed PCs and their SRs, we first employ the leverage transfor-

mation (2) to standardize these PCs, Π̂x ≡ ΠxDiag
Ä

1√
λx

ä
and Π̂y ≡ ΠyDiag

Å
1√
λy

ã
. As a result,

N standardized and pairwise orthogonal PCs {Π̂xn}Nn=1 (which are N columns of T × N matrix

Π̂x) constitute an orthonormal basis of the risky return space, and {Π̂yn}Nn=1 similarly constitute

another one.6 Next, note that any two orthonormal bases of a N-dim vector space can be ro-

tated from one to the other by a N × N rotation matrix O, we have Π̂y = Π̂xO, or equivalently,

Π̂′
y = O′Π̂′

x. Finally, taking the mean of every row in the last matrix equation, Π̂
′
y = O′Π̂

′
x, and

5Given that PCs Πx = XWx are linear combinations of N excess returns in XT×N , PCs are also excess returns.
Hence, the full traded return that mimics the n-th PC is Πxn +B0 = (

∑N
k=1 XkWxkn)+B0 =

∑N
k=1(Xk +B0)Wxkn +

(1 −
∑N

k=1 Wxkn)B0, per the discussion below (2). The demeaned component of this PC-mimicking return is Π̃xn =∑N
k=1
‹XkWxkn.

6Specifically, N standardized PCs Π̂x ≡ ΠxDiag

Å
1√
λx1

, . . . , 1√
λxN

ã
satisfies the orthonormal relations:

V ar
Ä
Π̂xn

ä
= 1

T

˜̂
Π′

xn
˜̂
Πxn = 1 and Covar

Ä
Π̂xn, Π̂xk

ä
= 1

T

˜̂
Π′

xn
˜̂
Πxk = 0, ∀n, k ∈ {1, . . . , N} and n ̸= k. Similar or-

thonormal relations hold for N standardized PCs Π̂y ≡ ΠyDiag

Å
1√
λy1

, . . . , 1√
λyN

ã
.
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noting that the means of standardized PCs are SRs of PCs, we have,7


Πy1√
λy1

...
ΠyN√
λyN


︸ ︷︷ ︸

=SR[Πy ]

= O′


Πx1√
λx1

...

ΠxN√
λxN


︸ ︷︷ ︸
=SR[Πx]

, or,


SR [Πy] = O′ SR [Πx] ,

SR [Πx] = O SR [Πy] .

(3)

We summarize this rotational invariance of SR in PCA in the following proposition, before dis-

cussing its implications.

Proposition 1 (Sharpe Ratio Rotational Invariance). The factor prices (i.e., SRs) of PCs constructed

from any two equivalent asset bases {B,Xn}Nn=1 and {B, Yn}Nn=1 of a return space are always re-

lated by a rotation, SR [Πy] = O′ SR [Πx] (3), where O is a N ×N rotation matrix.

This analytical result presents important guidance for the construction of pricing factors in

subsequent sections. We observe that in the difference with means and variances of principal

factors, which can be linearly scaled by arbitrary factors (2), principal factors’ prices (or SRs of

any set of principal components of a return space) are subject to a rotational variance. As a re-

sult, when only a limited number of principal factors is retained (i.e., dimensionality reduction),

this rotational invariance assures that, for any asset return basis, the higher prices the retained

factors have, the lower prices the omitted (not retained) factors have. That is, Proposition 1 indi-

cates that a combination of return transformations and PCA enables the dimensionality reduc-

tion by identifying a sparse structure of factor prices. In such a structure, retaining few factors of

dominant risk prices offers high attainable SRs and robustness against scaling operations that

can upset the covariance-based ranking and choice of factors.

2.2 Moment Fusing and Preliminary Illustrations

Moment fusing is a general, systematic and flexible framework to incorporate information from

important moments (e.g., mean, variance, skewness) of asset returns into the construction of

7To compute the mean of every row of the matrix Π̂′
y = O′Π̂′

x, we multiply to the left of both sides by 1
T
1T×1,

obtaining Π̂
′
y = O′Π̂

′
x, where the N×1 column Π̂

′
x contains means of N standardized PCs {Π̂xn}Nn=1, and Π̂

′
y contains

means of N standardized PCs {Π̂yn}Nn=1. Since these standardized PCs are constructed as Π̂x = ΠxDiag
Ä

1√
λx

ä
, their

means are Π̂xn = Πxn√
λxn

which are the SRs of PCs Πxn, n ∈ {1, . . . , N}. Similarly, the means of standardized PCs Π̂yn

are the SRs of PCs Πyn, n ∈ {1, . . . , N}. These results deliver (3).
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pricing factors. It consists of two stages. In the first stage, we construct transformed asset re-

turns YT×N by incorporating the first (and higher) moments mx of original returns XT×N . As a

result, the covariance structureΣy(mx) =
1
T
‹Y ′(mx)‹Y (mx) of the transformed returns is informed

by important moments of original returns. In the second stage, a covariance-based factor anal-

ysis (e.g., PCA) is performed on the transformed returns to identify factors Πy(mx) that reflect

original moments and price original returns.

Moment Fusing:

1st stage – Transformation

 X −→ Y (mx) = XS(mx);

Σx −→ Σy(mx) = S′(mx)ΣxS(mx).

2nd stage – Factor analysis

 W ′
y(mx) [Σy(mx)]Wy(mx) = Diag [λy(mx)]

=⇒ Πy(mx) = Y (mx)Wy(mx).

(4)

The N×N full-rank moment-fusing matrix S(mx) is critical for the construction. It is fused with,

and hence is a function of, moments mx of the original returns. Compared to the factor analysis

implemented on the original returns (i.e., diagonalizing Σx), the one implemented on the trans-

formed returns (i.e., diagonalizing Σy(mx) = S′(mx)ΣxS(mx)) also concerns moments mx other

than the second moment Σx. It therefore also results in informed pricing factors Πy(mx). In

the moment-fusing framework, the first stage preserves the return space (hence, the underlying

model), the second stage retains and utilizes advantages of the powerful factor analysis method-

ology. Below, we present three simple and known asset transformations and discuss why they

do not yet have desirable moment-fusing properties. The discussion serves as preliminary illus-

trations and motivation for elaborate moment-fusing constructions in the next section.

PCA using correlation matrix: The correlation matrix of original returns can be constructed as

the covariance matrix of transformed returns, which are scaled to have an unit volatility. Em-

ploying κn = 1
|σxn| in the transformation (2) produces

Ynt+1(κn) = κnXnt+1 =
µxn

|σxn|
+

σ′
xn

|σxn|︸ ︷︷ ︸
=σ̂′

xn

εxt+1, n ∈ {1, . . . , N}, (5)

where σ̂xn is an unit vector (|σ̂xn|= 1). Evidently, Corrt [Ynt+1(κn), Ykt+1(κk)] = Covt [Xnt+1(κn), Xkt+1(κk)],

for all n, k ∈ {1, . . . , N}. Therefore, a PCA implemented on the correlation matrix of the origi-
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nal asset returns is identical to a standard PCA implemented on the covariance matrix of the

transformed asset returns. Note that the operation (5) does not constitute a moment-fusing

transformation because the scaling parameters κn = 1
|σxn| , n ∈ {1, . . . , N}, do not incorporate

the first moment of original asset returns. While the PCA implemented on the transformed asset

returns identifies principal factors that explain the covariation of {Ynt+1(κn)}, these factors are

not informed by the pricing of the original assets. As a result, leading principal factors obtained

from a correlation matrix analysis are not necessarily the important pricing factors in the given

return space.

PCA using uncentered covariance matrix: The standard (centered) covariance matrix ‹X ′‹X quan-

tifies the return comovements around the means of respective asset returns and employs exclu-

sively the demeaned asset returns {‹Xn}Nn=1. By construction, the centered covariance matrix and

a standard PCA analysis based on this matrix are stripped of information about the first moment

of asset returns. In contrast, the uncentered covariance matrix X ′X employs non-demeaned as-

set returns {Xn}Nn=1 and hence contains information about the first moment of asset returns.

Hence, the employment of non-demeaned returns in defining the uncentered covariance ma-

trix constitutes a simple fusing of the first moment of asset returns into the factor analysis based

on this matrix.

However, such a simple moment fusing does not necessary identify important pricing fac-

tors because while containing information about the first moment, uncentered covariancesX ′X

do not delineate risks (i.e., return volatilities) from risk premia (i.e., mean excess returns). The

mixing of these two quantities complicates an understanding of the tradeoff between risks and

compensated returns in an asset pricing analysis. Intuitively, note that the uncentered covari-

ance matrix X ′X quantifies the return comovements around zero value of returns, whereas the

centered one ‹X ′‹X quantifies the comovements of returns with respect to the means of these

returns. In case the means of returns are similar, X ′X and ‹X ′‹X capture similar risks. But when

the means of returns are sufficiently heterogeneous, comovements characterized by the uncen-

tered ‹X ′‹X do not not simply or purely reflect common shocks inherent in these returns (but also

the similarities in the cross section of returns’ means). As a result, an important PC (associated

with a larger eigenvalue of X ′X) may capture a spurious common pattern in the cross section

of returns’ means. Such an ambiguous fusing of returns’ first moments into the uncentered co-

variance matrix does not necessarily identify important pricing factors.

11



Rotation transformation: Finally, we consider the transformed returns which are obtained the

original ones by a rotation, YT×N = XT×NQN×N , where QN×N is a rotation matrix. In this case,

original and transformed returns have identical PCs, Πx = Πy, and hence, identical principal

risk factors.8 That is, even when we fuse the rotation matrix Q with information about the first

moment of original asset returns, such moment fusing has no effects on principal factors ob-

tained from the transformed returns. Intuitively, this is because when every original return in

X is rotated rigidly by the same matrix Q, its covariance structure remain the same, resulting in

the same PCs for the two (original and transformed) return bases X and Y . As as result, a rota-

tion transformation is not a moment-fusion construction due to the rotation rigidity that keeps

intact relationships between the first and second moments of asset returns.

These simple illustrations of the PCA implemented on the correlation and uncentered co-

variance matrices and the rotation transformation motivate more sophisticated fusing construc-

tions that do not simply incorporate the first moment of original returns into the asset transfor-

mation but also do that in a way to inform about the underlying asset pricing model. We presents

such moment-fusing constructions next.

3 Moment Fusing: Main Constructions

This section introduces the main moment-fusing constructions of the paper by transforming

the return volatilities into SRs (Section 3.1), standardizing the mean returns (Section 3.2), and

relating and combining these constructions with the pricing restrictions of the literature (Section

3.3).

3.1 Sharpe Ratio Matrix and SR-PCA

We consider a moment-fusing construction that aims to identify factors of significant prices

equalizes the second moment of the transformed asset returns directly with Sharpe ratio of the

original asset returns. Specifically, the first stage of the construction employs scaling parameters

8The covariance matrices of transformed and original returns are related as, Σy = 1
T
‹Y ′‹Y = 1

T
Q′‹X ′‹XQ =

Q′ΣxQ. If Σx is diagonalized by Wx, or W ′
xΣxWx = Diag (λx), then Σy is diagonalized by Wy = Q′Wx. Indeed,

(W ′
y)(Σy)(Wy) = (W ′

xQ)(Q′ΣxQ)(Q′Wx) = W ′
xΣxWx = Diag (λx). PCs associated with the transformed returns are

then identical to those associated with the original returns, Πy = YWy = (XQ)(Q′Wx) = XWx = Πx.
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κn = (µxn)
1
2

|σxn|
3
2

in (2) and produces the transformed returns

Ynt+1(κn) = κnXnt+1 = (SR [Xn])
3
2︸ ︷︷ ︸

=µyn

+ (SR [Xn])
1
2︸ ︷︷ ︸

=σyn

σ̂′
xnεxt+1, (6)

where SR [Xn] = µxn

|σxn| is the Sharpe ratio of nth original return. In this construction, trans-

formed assets’ return variances equal the corresponding original returns’ Sharpe ratios, while

their mean returns equal the power 3
2 of the corresponding original returns’ Sharpe ratios. In the

general notation (4), the moment-fusing matrix is S(mx) = Diag

Å
(µx)

1
2

|σx|
3
2

ã
, and the transformed

covariance matrix Σy is related to the original counterpart Σx as

1

T
‹Y ′‹Y =


(µx1)

1
2

|σx1|
3
2

. . . 0

...
. . .

...

0 . . . (µxN )
1
2

|σxN |
3
2


‹X ′‹X
T


(µx1)

1
2

|σx1|
3
2

. . . 0

...
. . .

...

0 . . . (µxN )
1
2

|σxN |
3
2

 ,

or, Σy = Diag

[
(µxn)

1
2

|σxn|
3
2

]
Σx Diag

[
(µxN )

1
2

|σxn|
3
2

]
≡ SRM(X). (7)

Hereafter, we refer to Σy = SRM(X) defined above as the Sharpe ratio matrix of original returns

{Xn}Nn=1. It generalizes the Sharpe ratio µn

|σn| for a single asset return to a matrix version for N

asset returns. Evidently, SRM(X) (7) is a moment-fusing construction as the original means

{µxn}Nn=1 are incorporated into the transformed volatilities {σyn}Nn=1 (6) in such a way that σyn =

(µxN )
1
2

|σxn|
1
2

= (SR[Xn])
1
2 . Eigenvalues and eigenvectors of Σy then are also fused with original mean

returns. The moment-fusing pattern of SRM(X) (7) differs from the previous one of ISRM(X)

(10). This is evidenced in the fact that while being related, [SRM(X)]−2 strictly differs from

ISRM(X).

Next, the second stage of the construction implements the PCA on the transformed returns

(diagonalizing Σy) which is equivalent to a factor analysis based on the Sharpe ratio matrix of the

original returns (diagonalizing SRM(X)). Intuitively, factors prioritized by their eigenvalues are

dominated by large common components of transformed return volatilities, which are also large

components of original Sharpe ratios (6). Therefore, a standard eigenvalue ranking concerning

Σy = SRM(X) tends to prioritize factors of significant Sharpe ratios (or factor prices) for the

original asset returns. Building on this intuition and applying PCA on the SR matrix SRM(X) (7),

13



the moment-fusing construction prioritizes more volatile factors among PCs {Πyn} associated

with the transformed return basis {Yn} (6),

Sharpe Ratio-PCA (SR-PCA): λyn > λyk −→ Πyn ≻ Πyk, (8)

where {λyn} are eigenvalues of the inverse SR matrix SRM(X) and {Πyn} are the associated PCs.

We refer to this moment-fusing construction as the Sharpe Ratio-PCA (SR-PCA). As the trans-

formed mean returns µyn (6) increase with Sharpe ratios of the corresponding original returns,

the SR-PCA moment fusing aligns the contributions of the first and second moments of risky

assets to the factors. That is, all else being equal, as more volatile transformed returns (larger

σyn = (SR [Xn])
1
2 ) have stronger influences on the prioritized SR-PCA factors, their higher risk

premia (larger µyn = (SR [Xn])
3
2 ) also enhance the prices of these factors. Such an alignment

prevents the first moment to adversely skew the factors and their factor prices, allowing SR-PCA

to identify principal factors of significant factor prices.

3.2 Inverse Sharpe Ratio Matrix and ISR-PCA

Another moment-fusing construction starts with the observation that as the covariance-based

factor analysis ignores the information about the mean returns, the transformation from the

original returns to principal factors may have unintended influences on factors’ risk premia.

For instance, volatile principal factors may load little on some assets of high mean returns be-

cause these loadings are determined exclusively from how these assets contribute to the com-

mon movements of all asset returns. To address these unintended influences, we consider a

moment-fusing construction in which we standardize all mean returns to a same notional value

µ in the first stage, and implement the factor analysis on the transformed (standardized) returns.

The construction aims to control for (i.e., homogenize) return first moment, transforming and

organizing differences among returns into their second moment, which then can be appropri-

ately analyzed by the covariance-based PCA approach.

Specifically, the first stage of the construction employs scaling parameters κn = µ
µxn

in (2)

and produces the transformed returns (below, SR [Xn] =
µxn

|σxn| , ∀n, as in (6))

Ynt+1(κn) = κnXnt+1 = µ+ µ
1

SR [Xn]
σ̂′
xnεxt+1, (9)
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=⇒ µyn = µ, σyn = µ
|σxn|
µxn

= µ
1

SR [Xn]
, n ∈ {1, . . . , N},

where µ is a notional constant parameter.9 In this construction, up to the non-material multi-

plicative constant µ, the transformed return volatilities equal the inverse of the corresponding

original Sharpe ratios, σyn ∼ 1
SR[Xn]

, ∀n ∈ {1, . . . , N}. In the general notation (4), the moment-

fusing matrix is S(mx) = Diag
Ä

1
µx

ä
, and the transformed covariance matrix Σy is related to the

original counterpart Σx as (up to µ2)

1

T
‹Y ′‹Y =


1

µx1
. . . 0

...
. . .

...

0 . . . 1
µxN

 ‹X ′‹X
T


1

µx1
. . . 0

...
. . .

...

0 . . . 1
µxN

 , or, Σy = Diag

ï
1

µx

ò
Σx Diag

ï
1

µx

ò
︸ ︷︷ ︸

≡ISRM(X)

,

(10)

Hereafter, we refer to Σy = ISRM(X) ≡ Diag
î

1
µx

ó
Σx Diag

î
1
µx

ó
as the inverse Sharpe ra-

tio matrix of original returns {Xn}Nn=1. It generalizes the inverse of (squared) Sharpe ratio |σ|2
µ2

for a single asset return to a matrix version for N asset returns. Evidently, ISRM(X) (10) is a

moment-fusing construction as the original means {µxn}Nn=1 are incorporated into the trans-

formed volatilities {σyn}Nn=1 (9). Eigenvalues and eigenvectors of Σy then are also fused with

original mean returns.

Next, the second stage of the construction implements the PCA on the transformed returns

(diagonalizing Σy) which is equivalent to a factor analysis based on the inverse Sharpe ratio

matrix of the original returns (diagonalizing ISRM(X)). Intuitively, factors prioritized by their

eigenvalues are dominated by large common components of transformed return volatilities,

which are small components of original Sharpe ratios (9), and vice versa. This intuition indicates

that a reverse eigenvalue ranking concerning Σy = ISRM(X) then tends to prioritize factors of

significant Sharpe ratios (or factor prices) for the original asset returns (hence, the name inverse

SR matrix).10 Building on this intuition and applying PCA on the inverse SR matrix ISRM(X)

(10), the moment-fusing construction prioritizes less volatile factors among PCs {Πyn} associ-

ated with the transformed return basis {Yn} (9),

Inverse Sharpe Ratio-PCA (ISR-PCA): λyn < λyk −→ Πyn ≻ Πyk, (11)

9The specific value of µ has no material effect on the moment-fusing procedure or the resulting factors as it is a
common multiplicative factor for all returns {Yn}N1 .

10Such a reverse ranking can be performed by N auxiliary returns, Z̃ ≡ ‹X [Σx]
−1 Diag[µx]. The auxiliary co-

variance matrix satisfies, Σz = 1
T
Z̃′Z̃ = [ISRM(X)]−1 = Σ−1

y , so that reverse eigenvalue ranking on ISRM(X) is
equivalent to standard ranking on Σz .
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where {λyn} are eigenvalues of the inverse SR matrix ISRM(X) and {Πyn} are the associated

PCs. We refer to this moment-fusing construction as the inverse Sharpe Ratio-PCA (ISR-PCA).

For the robustness against possible spurious factors associated with small eigenvalues of ISRM(X),

our empirical analysis (Sections 4 and 5) retains only eigenvalues {λny} above a threshold suf-

ficiently different from zero, before applying the ISR-PCA prioritization (11). As transformed

mean returns are identical, the ISR-PCA moment fusing homogenizes the contribution of the

first moment of all risky assets {Yn}Nn=1, leaving their second moments (i.e., the inverse SRs of

original returns) and the associated PCA to identify principal factors of significant factor prices.

3.3 Pricing Restrictions and Moment Fusing

The moment fusing constructions considered above are flexible to incorporate some important

features of other pricing approaches. One such prominent approach is Lettau and Pelger (2020)’s

Risk-premium principal component analysis (RP-PCA). The RP-PCA takes into account the first

moment of asset returns in the form of pricing restrictions, which are the penalties imposed on

the deviation between the empirical mean excess returns and the risk premia implied by RP-PCA

factors. In this section, we first briefly discuss the relation between RP-PCA and moment-fusing

frameworks. We then combine the two approaches to incorporate the pricing restrictions into

ISRM-PCA and SRM-PCA constructions.

RP-PCA and moment fusing: Given asset returns {Xnt}Nn=1 (1), RP-PCA searches for pricing fac-

tors {ΠRP
nt }Nn=1 by minimizing an weighted objective function of unexplained covariation (con-

cerning the second moment) and pricing errors (i.e., pricing restrictions, concerning the first

moment) of asset returns

min
{ΠRP ,WRP }

Trace
{
1

T

î‹X − Π̃RPWRP ′ó′ î‹X − Π̃RPWRP ′ó
+ (1 + γ)

î
X −Π

RP
WRP ′ó′ î

X −Π
RP

WRP ′ó}
,

(12)

where ‹XT×N and X1×N denote respectively matrices of (demeaned) asset returns and their

means, Π̃RP
T×N , Π

RP
1×N , and WRP

N×N the matrices of (demeaned) factors, their means, and loadings.

Parameter γ specifies the relative weight between pricing errors and unexplained covariation

in the objective function.11 Lettau and Pelger (2020) show that RP-PCA factor construction is

11In comparison, the standard PCA identifies factors (or principal components) by minimizing only the unex-

plained covariation of asset returns, min{ΠRP ,WRP } Trace
(î‹X − Π̃RPWRP ′ó′ î‹X − Π̃RPWRP ′ó)

. As a result, RP-PCA

coincide with PCA when γ = −1.
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equivalent to diagonalizing a N × N covariance matrix ΣRP
x (γ) adjusted by the pricing restric-

tions. Accordingly, the prioritization of RP-PCA factors also reduces to the standard eigenvalue

ranking concerning the adjusted covariance matrix ΣRP
x (γ) (Lettau and Pelger (2020))

ΠRP (γ) = XWRP (γ), with

 ΣRP
x (γ) ≡ 1

T
‹X ′‹X + (1 + γ)X

′
X,

WRP ′
(γ) ΣRP

x (γ) WRP (γ) = Diag
[
λRP
n (γ)

]
,

(13)

Risk-Premium PCA (RP-PCA): λRP
n (γ) > λRP

k (γ) −→ ΠRP
n (γ) ≻ ΠRP

k (γ).

Intuitively, a deviation between mean original returns and their RP-PCA implied risk premia

(i.e., implied by their loadings on RP-PCA factors) are transformed into a reduced covariation

quantifies by the adjusted covariance matrix ΣRP
x (γ). As a result, volatile PCs associated with

ΣRP
x (γ) also characterizes pricing factors that generate reduced price errors for original asset

returns. Hereafter, we omit the explicit γ-dependence notation attached to RP-PCA’s quantities

when the omission does not create ambiguity.

While both RP-PCA and moment-fusing frameworks incorporate information about the first

moment of asset returns, their factors differ. At the construction level, RP-PCA factors are con-

structed directly from the original asset returns {B0, Xn}Nn=1 by effectively adjusting their co-

variance structure ΣRP
x (13), resulting in correlated factors {ΠRP

n }Nn=1.12 In contrast, moment-

fusing factors are constructed indirectly from the original returns by first constructing the trans-

formed returns via the moment-fusing matrix S(mx) (4), resulting in uncorrelated factors as PCs

{Πyn(mx)}Nn=1 of the transformed returns. More importantly, the subjective functions under-

lying RP-PCA and moment-fusing factors are different. RP-PCA factors (13) minimize a linear

combination of first (pricing errors) and second (unexplained covariation) moments. Moment-

fusing ISR-PCA (11) and SR-PCA (8) prioritize non-linear combinations (in the form of inverse

SRs and SRs) of the two moments. Whether RP-PCA factors prioritize SRs can be explicitly seen

12Note that the covariance matrix of RP-PCA factors 1
T
Π̃RP ′

Π̃RP = WRP ′ 1
T
‹X ′‹XWRP = WRP ′

ΣxW
RP is not a

diagonal matrix because the orthogonal matrix diagonalizes the adjusted covariance matrix ΣRP
x , but not the original

Σx.
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by computing the prices of these factors,13

SR
Ä
ΠRP

n

ä
=

µΠn√
V ar (ΠRP

n )
=

ñ
λRP
n

µ2
Πn

− (γ + 1)

ô− 1
2

, (14)

where µΠn is the mean return of the n-th RP-PCA factor, µΠn = XWRP
n and WRP

n is the n-th

column of rotation matrix WRP (13). Evidently, RP-PCA factor price SR
(
ΠRP

n

)
is inversely re-

lated to the ratio λRP
n

µ2
Πn

, but not to λRP
n alone. As a result, RP-PCA factors, which are prioritized

exclusively on the magnitude of λRP
n , do not necessarily have largest prices SR

(
ΠRP

n

)
.14 The

non-monotonic relationship between RP-PCA SRs and eigenvalues indicates improvements by

combining RP-PCA and moment-fusing approaches.

Combining pricing restrictions with moment fusing: We extend the moment-fusing frame-

work to incorporate Lettau and Pelger (2020)’s pricing restriction into the second (factor anal-

ysis) stage of the framework (4). Specifically, after constructing the transformed returns in the

first stage, we optimize the weighted objective function (12) using the transformed returns Y =

XS(mx). That is, we replace the original X by XS(mx) in that objective function. Next, by em-

ploying a similar deduction from the optimization (12) to the diagonalization of an adjusted co-

variance matrix (13), the second stage of the moment-fusing framework (4) extended with pric-

ing restrictions amounts to diagonalizing the adjusted matrix Σy(mx) =
1
T
‹Y ′‹Y + (1 + γ)Y

′
Y .

In summary, combining the moment fusing (4) with RP-PCA (13), in terms of original returns

XT×N , the pricing factors in the T ×N matrix Πy(γ, Sm) are constructed as follows

Πy(γ,mx) = XSm Wy(γ,mx),

 Σy(γ,mx) ≡ S′(mx)
î
1
T
‹X ′‹X + (1 + γ)X

′
X
ó
S(mx),

Wy
′(γ,mx) Σy(γ,mx) Wy(γ,mx) = Diag [λyn(γ,mx)] ,

Extended moment fusing: λyn(γ,mx) > λyk(γ,mx) −→ Πyn(γ,mx) ≻ Πyk(γ,mx). (15)

Notationally, the constructed factors Πy(γ,mx) feature both moment fusing (mx) and pricing re-

13Recall that λRP
n is not the variance of n-th RP-PCA factor ΠRP

n . Instead, V ar
(
ΠRP

n

)
= E

î(
ΠRP

n

)2ó − E2
[
ΠRP

n

]
= 1

T
ΠRP ′

n ΠRP
n − µ2

Πn = WRP ′
n

1
T
X ′XWRP

n − µ2
Πn. To compute this variance, note from (13) that X ′X = 1

T
‹X ′‹X +

X
′
X = ΣRP

x −γX
′
X, which then implies WRP ′

n
1
T
X ′XWRP

n = λRP
n −γµ2

Πn. As a result, the variance of RP-PCA factor
is, V ar

(
ΠRP

n

)
= λRP

n − (γ + 1)µ2
Πn, which delivers the factor price in (14).

14Note that the RP-PCA minimization of pricing errors and unexplained covariation in asset returns (12) is equiv-
alently characterized by the diagonalization (13), which is not equivalent to the determination of factor risk premia
{µΠn}. That is, leading RP-PCA factors (associated with larger λRP

n ) do not necessarily have high factor risk premia
µΠn. As a result, when µΠn do not increase adequately with

√
λRP
n , factor prices SR

(
ΠRP

n

)
may decrease with λRP

n ,
i.e., factors retained in RP-PCA model may have lower factor prices and are not retained by PPRF and vice versa.
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strictions (γ) attributes. Intuitively, the pricing restrictions discipline pricing errors that persist

among transformed returns Y (mx) that are fused with original moments mx. As an implication

of Proposition 1, factors of significant factor prices (or, SRs) obtained in this procedure (con-

cerning the set of transformed returns Y ) also deliver significant maximum attainable Sharpe

ratio in the set of original returns X because these two sets are equivalent bases. Empirically, we

test the constructed pricing factors Πy(γ,mx) against original returns X. We further employ a

training procedure to determine γ dynamically to obtain the optimal out-of-sample attainable

Sharpe ratios (detailed in Appendix B.1).

When applying the above extended moment fusing construction to the SR-PCA (7), we em-

ploy the respective moment-fusing matrixS(mx) = Diag

Å
(µx)

1
2

|σx|
3
2

ã
in the construction (15). When

applying the extended moment fusing construction to the ISR-PCA (10), we employ the respec-

tive S(mx) = Diag
Ä

1
µx

ä
, adopting a negative sign associated with the covariation term ‹X ′‹X in

the adjusted covariance Σy(γ,mx) in (15). This adoption helps to convert the ISR-PCA reverse

eigenvalue ranking (11) with the standard eigenvalue ranking in (15). Empirically, to utilize

the moment-fusing flexibility, we further combine the factors obtained from the SR-PCA and

ISR-PCA extended moment fusing constructions. The combined factors are either (i) equally

weighted, or (ii) optimally weighted

 Equally weighted: Πew = 0.5ΠSR−PCA(γe,mx) + 0.5ΠISR−PCA(γe,mx),

Optimally weighted: Πow = (1− w∗)ΠSR−PCA(γo,mx) + w∗ΠISR−PCA(γo,mx),
(16)

wherein the optimal weight w∗ is dynamically determined using rolling windows. Sections 4 and

5 below present implementation details and empirical results for FX and equity markets.

4 Empirical Analysis: FX Market

This section presents an empirical analysis of the moment-fusing framework and related pric-

ing models in the FX market. Section 4.1 discusses FX data and sources. Section 4.2 presents

basic currency strategies and benchmark FX factors from the perspective of a generic currency

denomination (numeraire). Section 4.3 presents in- and out-of-sample empirical results for var-

ious moment-fusing constructions and benchmark models in different numeraire currencies.

Appendix B.1 details the training procedure of pricing models.
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4.1 FX Data

This section describes the exchange rate data and interest differential data required to construct

the monthly currency returns. Apart from the U.S. dollar (USD), there are 10 currencies of de-

veloped economies in the data: Australian dollar (AUD), Canadian dollar (CAD), Danish krone

(DKK), Euro (EUR), Japanese Yen (JPY), New Zealand dollar (NZD), Swedish krona (SEK), Nor-

wegian krone (NOK), Swiss franc (CHF), and British pound sterling (GBP). In the sample, the

exchange rates Sf/US,t are the price of one unit of currency f in terms of the US dollar at time t

(i.e., the exchange rate convention is per unit of the foreign currency).

In the original data set is from the World Market/Refinitiv (WM/R, previous Thompson Reuters),

the spot rate (bid and ask) and 1-month forward rate (bid and ask) are all in daily frequencies

from December 31, 1984 to October 31, 2025. However, we take the average of the bid and ask

rates for both the spot and 1-month forward rates, and take the end-of-month observations

throughout the empirical analysis. In addition, before the Euro is introduced in January 1999,

we take the German Mark as the proxy for the Euro, and adjust the exchange rate of German

Mark by the fixed exchange rate of 1 EUR = 1.95583 German Mark as given by the Deutschbank

when Euro is first introduced. Our exchange rate data are therefore monthly from December

1984 to October 2025. The monthly interest rate differential data up to April 2020 is available on

Adrien Verdelhan‘s website. 15 We supplement this data set by employing the forward discount

(the one-month forward exchange rate minus the spot exchange rate, in the covered interest par-

ity) to estimate the interest rate differential with respect to the U.S. interest rate for the period

from May 2020 to October 2025, relying on the cover interest rate parity (CIP, Footnote 16).

We employ four standard measures to evaluate and quantify a given pricing model, which are

(i) the maximum attainable Sharpe ratio, (ii) root-mean-square pricing error, (iii) Gibbons-Ross-

Shanken (GRS) test statistic, and (iv) percentage of unexplained (idiosyncratic) return variation.

Among these pricing measures, the maximum attainable Sharpe ratio speaks most directly the

moment-fusing constructions for two reasons. Namely, SRs are robust to scaling operations of

the type (2), and relatedly, moment-fusing factors are constructed to deliver significant factor

prices. Reporting and assessing the OOS value of the maximum attainable Sharpe ratio help to

mitigate the concern that a model under consideration may over-fitting asset returns by deliv-

ering high in-sample SRs. Appendix B.2 presents a description of these pricing measures.

15http://web.mit.edu/adrienv/www/Data.html, under the heading “Monthly Changes in Exchange Rates and
Global Risk Factors".

20

http://web.mit.edu/adrienv/www/Data.html


4.2 Currency Returns and FX Strategies

This section discuss currency returns and describes well-known currency strategies and FX pric-

ing factor benchmarks. For concreteness, we first consider USD as the numeraire currency, be-

fore adopting a generic numeraire currency H .

USD numeraire: Consider a typical currency strategy borrowing (short) the US dollar at month

t to invest (long) in currency i for the period from month t to month t + 1, at which time the

investment is liquidated and proceeds are converted back to the US dollar. Employing CIP, this

strategy can be implemented using 1-month forward exchange rate contract. The strategy’s re-

alized return, also referred to as currency i’s return, in the US dollar numeraire is,16

CTi/US(t+ 1) = ln(St+1)− ln(Ft) ≡ st+1 − ft, (17)

where st+1 is the log of the spot rate with respect to the US dollar in month t + 1. ft is the log of

the 1-month forward exchange rate rate with respect to the US dollar in month t. We compute

the currency returns with respect to the US dollar for 10 other currencies in the sample. The

currency return series are monthly, spanning January 1985 and October 2025.

We next follow Lustig et al. (2011) to construct two prominent factor in the FX market, namely,

the Dollar (denoted as RX) and the High-minus-Low (HML) factors. We sort currency returns

(17) based on the contemporaneous forward discount ln(St/Ft) into 5 portfolios, which is equiv-

alent to sorting currencies based on the interest rate differentials of country i with respect to the

US, ri,t−rUS,t, given CIP. The portfolio is rebalanced for each month, so the sorting of currencies

into 5 portfolios based on the ranking of the forward discount is for each month. For the month

t+ 1, we compute the return of RX and HML as follows,

RX(t+ 1) =
1

10

10∑
i=1

CTi/US(t+ 1), (18)

HML(t+ 1) =
1

2

2∑
Hi,t=1

CTHi,t/US(t+ 1)− 1

2

2∑
Li,t=1

CTLi,t/US(t+ 1), (19)

where Hi,t (and Li,t) indicates the two currencies with the highest (and lowest) forward discount

16 CIP is a no-arbitrage implication that the currency forward discount ft ≡ St
Ft

− 1 equals the interest rate differ-
ential, ft = ri,t − rUS,t, where St and Ft are respectively the spot and forward exchange rate between currency i and
the US dollar. CIP allows for a substitution of the interest rate differential by the forward discount in the currency
return, which results in (17).
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with respect to the US dollar in month t.

Generic numeraire currencyH : We consider the currency return of a generic strategy borrowing

currency B and lending other currencies L in the numeraire currency (or, the base currency) H .

In terms of the forward and spot rates, this currency return is

CTH
L/B(t+ 1) =

Ä
sHL,t+1 − sHL,t + rL,t − rH,t

ä
−
Ä
sHB,t+1 − sHB,t + rB,t − rH,t

ä
=
Ä
sHL,t+1 − fH

L,t

ä
−
Ä
sHB,t+1 − fH

B,t

ä
= CTH

L/H(t+ 1)− CTH
B/H(t+ 1).

(20)

where sHi,t is the log of the spot exchange rate between currency i and the base currency H at time

t, and fH
i,t is the log of the forward exchange rate between currency i and the base currency H at

time t. Note that the long-short strategy involving currencies L and B in the numeraire currency

H can be decomposed into a long-short strategy involving currencies L and H and another one

involving currencies H and B. As a result, return CTH
L/B(t+1) (20) is related to a pair of currency

i’s return CTi/H(t + 1) in the numeraire currency H (which are similar to CTi/US(t + 1) in (17),

with US replaced by H).

To reflect the perspective associated with a new base currency H , we consider the RX strategy

as borrowing (short) the home currency and lending (investing in or long) equally other curren-

cies. The return (in the numeraire currency H) of this strategy is

RXH(t+ 1) =
1

10

10∑
i=1

CTi/H(t+ 1), where CTi/H(t+ 1) = sHi,t+1 − fH
i,t . (21)

By construction, RX strategies differ across the respective base currencies as they are home-

specific (always borrowing the respective home currencies). As a result, these RX strategy returns

do not simply differ from each other by an exchange rate factor between the base currencies.

Such a home-specific RX construction allows us to relate their returns to the dominant PC of the

corresponding home-specific exchange rates. That is, we aim to examine whether the relation-

ship between RX and the first PC in the US dollar numeraire documented in Lustig et al. (2011)

extends to other numeraires.

Similarly, given the perspective associated the base currency H , we sort other currencies

based on their forward discount with respect to the base H into 5 portfolios. We consider the

HML strategy (from the base H’s perspective) as borrowing (short) currencies in the bottom,

and lending (long) currencies in the top, portfolios. The return (in the numeraire currency H) of
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this strategy is

HMLH,t+1 =
1

2

2∑
Hi,t=1

CTHi,t/H(t+ 1)− 1

2

2∑
Li,t=1

CTLi,t/H(t+ 1), (22)

where Hi,t (and Li,t) indicates the two currencies with the highest (and lowest) forward discount

with respect to the base currency H in month t. Since sorting based on the forward discounts is

equivalent to sorting based on the interest rate differentials (assuming CIP), the compositions of

portfolios underlying the HML strategy in the US dollar base (19) and in the base of currency H

(22) are essentially the same.17 As a result, these HML strategy returns differ only by an exchange

rate between the US dollar and currency H .

Moment-fusing constructions in the FX market: The moment-fusing framework is a generic

approach to construct pricing factors. For the FX market, we adopt and combine the moment-

fusion constructions of SR-PCA (7), ISR-PCA (10) with the pricing restrictions from RP-PCA (13)

as described in the combined constructions (16), Section 3.3. Our empirical analysis is per-

formed separately for 4 different and representative numeraires of developed currencies in the

sample (USD, JPY, AUD, GBP). For each numeraire currency H , we first identify the original as-

set returns XT×N in our conceptual analysis (Sections 2 and 3) with the time series of currency

returns {CTi/H} (21), where i is in the set of N = 10 currencies (excluding the current base cur-

rency H) in the samples. We then construct the transformed currency returns by incorporating

the first moment mx of the original currency returns {CTi/H}, i ∈ {1, . . . , N}, using either SR-

PCA or ISR-PCA constructions combined with pricing restrictions. As a result, we obtain the

associated adjusted covariance matrix Σy(mx), whose diagonalization (i.e, the factor analysis,

or PCA) leads to the extended moment-fusing (SR-PCA and ISR-PCA) factors (15). To compare

with the two FX benchmark factors RX (21) and HML (22), our factor analysis only retains the

top two (1st and 2nd) principal factors. We combine the retained principal factors of the same

(1st or 2nd) ranking from the extended moment-fusing SR-PCA and ISR-PCA to obtain the corre-

sponding (1st or 2nd) equally and optimally weighted principal factors (16). Finally, to optimize

OOS maximum attainable SRs, we incorporate the pricing restrictions into these moment-fusing

models, using a training procedure (detailed in Appendix B.1) to determine the pricing restric-

17In either bases of the US dollar and currency H , the currencies in the top (bottom) portfolio have highest (lowest)
interest rates. Therefore, except in periods in which the US dollar or currency H are in these top or bottom portfolios,
the long (and short) currencies in the HML strategies are the same from the perspective of the US dollar and H
numeraires.
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tions’ weight γ dynamically (reported in Figure 1 for the representative USD numeraire).

4.3 Empirical Results in the FX Market

This section reports empirical results and analysis using the FX market data. For references,

Table 1 summarizes the nomenclature for various data sets, factor constructions, and pricing

measurements employed in our empirical implementation. Our empirical results and analysis

concern the covariance structure, factor prices (i.e., SRs), and the pricing performance in- and

out-of-sample, of the moment-fusing factors and their comparative benchmarks. Among the 4

reported pricing measures, the OOS maximum attainable Sharpe ratio presents a primary as-

sessment for the moment-fusing factors as this measure addresses the factor price, in-sample

over-fitting concern, and robustness again scaling operations as discussed earlier.

Panel A of Table 2 reports, separately for each of the 4 numeraire currencies (USD, JPY, AUD,

GBP), the correlations of base-specific RX and HML factors with model-specific top two (1st

and 2nd) factors of various models under consideration (standard PCA, RP-PCA, ISR-PCA, and

SR-PCA).18 For all 4 numeraire currencies, the top two factors of RP-PCA practically coincide

with those of the standard PCA, as seen in their practically identical correlations with the two

FX benchmark factors RX and HML. This indicates a subdued contribution from the pricing

restriction term (concerning the first moment) in the RP-PCA objective function (12) for FX data.

RX also correlate strongly with the 1st PC for all considered numeraire currencies, extending

Lustig et al. (2011)’s finding that RX is basically the level factor to numeraires other than the US

dollar. Notably, SR-PCA1 also exhibits similar and strong correlation pattern with the 1st PC,

indicating that the top factor of SR-PCA model is also largely the level factor, for all numeraire

currencies.

In the numeraire of the US dollar, HML correlates significantly with the 2nd PC, replicating

Lustig et al. (2011)’s finding that that HML is basically the slope factor. However, in the numeraire

of JPY and AUD, HML correlates moderately with the 2nd PC, indicating that the long-short (cur-

rency carry trade) strategy HML is not a level factor universally for all numeraire currencies. Fur-

thermore, the top two factors of ISR-PCA (which are ISR-PCA1 and ISR-PCA2) and the 2nd factor

of SR-PCA (which is SR-PCA2) correlate either mildly or little with RX and HML, indicating that

these moment-fusing factors differ significantly from the FX benchmark factors RX and HML in

18That is, the top two (1st and 2nd) factors are ranked based on model-specific priority criterion of the model
under consideration.

24



all 4 numeraire currencies.

Panel B of Table 2 reports the cross-numeraire correlations of RX (upper half of the panel) and

HML (lower half of the panel). Per the discussion below (21), RX strategy (borrowing the home

and lending equally all other currencies in the sample) is base-specific (differing principally in

their short currencies), and it is also essentially the level factor in that base currency (as seen

above, in the Panel A). In the panel, RX cross-numeraire correlations are mild (and mostly neg-

ative), indicating that these base-specific level factors (PC1) differ sufficiently. A caveat is that

these RX are measured in different base currencies, so their correlations include an inherent

exchange rate component between currency bases. The cross-numeraire correlations of HML

present a measure for this exchange rate component because HML is largely the same strategy

(borrowing low, lending high interest rate currencies) across bases as observed below (22). In

the panel, HML’s cross-numeraire correlations are significant and positive, affirming significant

differences between base-specific level factors.

Table 3 contains the main results, both in-sample (IS) and out-of-sample (OOS), concerning

the pricing performance, quantified by 4 pricing measures (Appendix B.2), of 7 different factor

models in the FX market. The models are Lustig et al. (2011)’s RX & HML (21)-(22), PCA, Let-

tau and Pelger (2020)’s RP-PCA (13), moment-fusing models SR-PCA (7) and ISR-PCA (10), and

extended (combined with pricing restrictions) moment-fusing models Πew (equally weighted)

and Πow (optimally weighted) (16). Among these, RX & HML is a well-known benchmark FX fac-

tor pricing model in the related literature. Accordingly, for every model in the table, we retain

the top two factors (ranked by the respective priority criterion of that model) for a comparable

analysis with the two factors RX and HML. The left panel shows the IS results across the entire

sample period, while the right panel shows the OOS results obtained with a dynamic training

procedure on the pricing restriction’s weight γ (Appendix B.1).

In sample, RX & HML model delivers the highest maximum attainable (annualized) Sharpe

ratio of 0.39, 0.43, and 0.34 respectively for 3 numeraire currencies of USD, JPY, and GBP. The ex-

tended moment-fusing model Πow delivers the next highest (and highly comparable) maximum

attainable Sharpe ratio of 0.35, 0.45, and 0.34. In the remaining numeraire of AUD, Πow’s maxi-

mum attainable Sharpe ratio of 0.38 outperforms RX & HML’s 0.35. The moment-fusing model

ISR-PCA delivers significant maximum attainable Sharpe ratios, but also high percentages of un-

explained return variation σe, reflecting the reverse eigenvalue ranking (i.e., focusing less on the
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pricing measure of σe) in this model. Note that a scaling operation (2) can curb σe without chang-

ing the identified factors. RP-PCA performs similarly to PCA because as noted in above, pricing

restriction has a subdued contribution to the top two principal factors using FX data, produc-

ing essentially same top factors in RP-PCA and PCA in sample. Out of sample, moment-fusing

factors consistently outperform other models by significant amounts of the highest maximum

attainable Sharpe ratio. First, both ISR-PCA and SR-PCA outperforms the benchmark factors RX

& HML in all 4 numeraire currencies, and SR-PCA outperforms RP-PCA in 3 numeraire curren-

cies. Second, the extended moment-fusing factors Πow’s and Πew’s highest maximum attainable

Sharpe ratios further dominate that of moment-fusing factors (ISR-PCA and SR-PCA), PCA and

RP-PCA, and the benchmark RX & HML, in all numeraire currencies. PCA and RP-PCA differ sig-

nificantly only in the GBP numeraire. These results show the importance and improvement of

combining pricing restrictions with the moment-fusing constructions to identify superior pric-

ing factors OOS.

5 Empirical Analysis: Equity Market

This section presents an empirical analysis of the moment-fusing framework and related pricing

models in the equity market. Section 5.1 discusses equity data and sources. Section 5.2 presents

in- and out-of-sample empirical results for various moment-fusing constructions and bench-

mark models in various numeraire currencies.

5.1 Equity Data

Our empirical analysis employs 74 and 370 extreme-decile anomaly portfolios (denoted respec-

tively as LP74 and LP370) from Lettau and Pelger (2020) and sampled at monthly frequency.

They select 37 out of 50 characteristics that are available as of November 1963, and sort returns

into 10 portfolios based on the characteristics deciles.19 While the sourced data (Footnote 19) is

available up to December 2019, we follow the source’s definitions of anomalies to replicate and

extend the anomaly portfolios up to December 2024. We also obtain and employ the monthly

returns of the Fama-French 25 size-B/M sorted portfolios (denoted as FF25).20 As a result, in

19 The characteristics are available at https://www.serhiykozak.com/data, under the heading "Portfolio Sorts",
and discussed in Kozak et al. (2018).

20Fama-French 25 size-B/M sorted portfolios are from Ken French’s website
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data-library.html
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our empirical analysis, the sample period for these three data sets is from November 1963 to

December 2024 with no missing values of the these portfolio returns. The standard deviations

and kurtosis of portfolio returns are within the normal range. For LP74, the average standard de-

viations across 74 portfolio monthly returns is 5%, and the average kurtosis is 3. For LP370, the

average standard deviations across 370 portfolio monthly returns is 5%, and the average kurtosis

is 3. Therefore, we do not further winsorize or truncate the portfolio returns.

Our main equity test assets are LP74 and LP370 due to the sufficiently large number of eq-

uity portfolios and diverse characteristics underlying those portfolios. For robustness, we fur-

ther include FF25 as test assets. Among the 37 characteristics underlying LP74 and LP370, 14

are constructed from price measures. Other 21 characteristics are constructed from accounting

measures, of which 9 concern valuation and profitability measures. The list of these characteris-

tics is presented in Appendix B.3. The moment-fusing constructions are similar to those for the

FX market. In particular, to optimize OOS maximum attainable SRs, we incorporate the pricing

restrictions into these moment-fusing constructions, using a training procedure (Appendix B.1)

to determine the pricing restrictions’ weight γ dynamically (reported in Figure 2 for the repre-

sentative LP74 portfolios).

5.2 Empirical Results in the Equity Market

This section reports empirical results and analysis using the equity market data. Our empirical

results and analysis concern the pricing performance of the moment-fusing factors and their

comparative benchmark models separately for three data sets (LP74, LP370, FF25) in-sample

and out-of-sample. Similar to the empirical analysis using FX data above, due to the nature of

the moment-fusing constructions, the OOS maximum attainable Sharpe ratio remains a primary

pricing measure for the moment-fusing factors using equity data. For robustness, we also report

3 other standard pricing measures for all pricing models (Appendix B.2). The the nomenclature

is in Table 1.

Table 4 reports the pricing performance, quantified by 4 pricing measures (Appendix B.2), of

6 different factor models using 74 extreme-decile anomaly portfolios. The models are PCA, Let-

tau and Pelger (2020)’s RP-PCA (13), moment-fusing models SR-PCA (7) and ISR-PCA (10), and

extended (combined with pricing restrictions) moment-fusing models Πew (equally weighted)

and Πow (optimally weighted) (16). Among these, RP-PCA is a prominent factor pricing bench-

27



mark model that incorporates both first and second moments of returns. Accordingly, for every

model in the table, we retain K = 3 and K = 5 factors (ranked by the respective priority criterion

of that model) for a comparable analysis. The left panel shows the IS results across the entire

sample period, while the right panel shows the OOS results obtained with a dynamic training

procedure on the pricing restriction’s weight γ (Appendix B.1).

In sample, for K = 3 factors, the moment-fusing models SR-PCA, Πow, Πew and RP-PCA in

order deliver 4 highest maximum attainable (monthly) Sharpe ratio of 0.45, 0.45, 0.44 and 0.37

respectively. For K = 5 factors, the same ranking holds for these 4 models but with slightly im-

proved Sharpe ratio of 0.49, 0.49, 0.47 and 0.45. Note that these Sharpe ratios (after being con-

verted to annualized values) are significantly higher than those obtained using FX data (Section

4.3) in part because a larger number of returns in the equity data sample offers a higher degree

of diversification. Out of sample, for K = 3 factors, SR-PCA, Πow, and RP-PCA deliver similar

maximum attainable (monthly) Sharpe ratio of 0.09, 0.09, and 0.10 respectively. For K = 5,

these models deliver 0.55, 0.55, and 0.45 respectively. The OOS under-performance of Πew com-

pared to Πow (for both K = 3 and K = 5) shows the robustness of optimally choosing the weight

between components in the extended moment-fusing model (16). The moment-fusing model

ISR-PCA delivers high maximum attainable Sharpe ratio (0.41 for K = 3 and 0.48 for K = 5) but

also the highest percentage of unexplained return variation σe, reflecting the reverse eigenvalue

ranking in this model.

Table 5 reports the pricing performance of the same models using 370 extreme-decile anomaly

portfolios. In sample, for both K = 3 and K = 5 factors, the moment-fusing models Πow, Πew,

SR-PCA, and ISR-PCA deliver 4 highest maximum attainable (monthly) Sharpe ratio. Out of sam-

ple, for K = 3 factors, Πow and PCA deliver highest maximum attainable (monthly) Sharpe ratio

(0.21, and 0.22 respectively), next performing models are RP-PCA and SR-PCA (delivering 0.19,

and 0.16 respectively). For K = 5, Πow, SR-PCA and RP-PCA are three top models, all delivering

the highest maximum attainable (monthly) Sharpe ratio of 0.37, while PCA delivers 0.26.

Table 6 reports the pricing performance of the same models using the Fama-French 25 size-

B/M sorted portfolios, which has a significantly smaller sample size compared to LP74 and

LP370. In sample, the moment-fusing models Πow, SR-PCA, and RP-PCA are top performing

models in terms of delivering the highest maximum attainable (monthly) Sharpe ratio of respec-

tively 0.25, 0.25, and 0.26 (for K = 3), and 0.37, 0.37, and 0.36 (for K = 5). Out of sample, these
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same models deliver the maximum attainable Sharpe ratio of 0.24, 0.24, and 0.25 (for K = 3),

and 0.28, 0.28, and 0.34 (for K = 5), indicating the out-performance of RP-PCA when we retain

5 factors.

In summary, the moment-fusing factor construction extended with pricing restrictions and

optimal weight Πow is the outperforming pricing model OOS for consistently for all equity data

sets, different numbers of retained factors, in terms of delivering maximum attainable Sharpe

ratio and other pricing measures (with the exception of a 5-factor setting using FF25 data set,

in which RP-PCA is the outperforming model). Next, the moment-fusing factor model SR −

PCA also outperforms OOS for larger equity data sets of LP74 and LP370, specially when we

retain K = 5 factors. These findings show important improvements in pricing factors whose

constructions are fused with original return moments combined with the imposition of pricing

restrictions.

6 Conclusions

The current paper introduces the moment-fusing framework to identify important common risk

factors that price asset returns in the cross section and out of sample. The framework consists

of two stages. In the first stage, we construct an equivalent set of transformed returns whose co-

variance structure is fused with information of the first (and possibly higher) moment of original

returns. In the second stage, we implement the covariance-based factor analysis on the trans-

formed returns. This approach obtains the principal pricing factors are informed by the risk

premia and Sharpe ratios of original returns while also utilizing the elegance and power of the

PCA methodology.

Using FX and equity data, our empirical analysis provides evidence for the out-performance

of the moment-fusing models as quantified by the maximum attainable Sharpe ratios and other

pricing measures. The moment-fusing constructions are flexible and can also be combined with

pricing restrictions to enhance their pricing performance. While the current paper focuses on

optimizing factor prices, the moment-fusing framework is general and adaptable to optimizing

other moments of pricing factors.
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Appendices

Appendix A contains Tables and Figures preseting empirical results of the paper. Appendix B

contains further data and empirical details, Appendix B.1 summarizes the training steps for pric-

ing models, Appendix B.3 lists characteristics concerning equity portfolios.

A Tables and Figures

Table 1: Nomenclature

This table outlines the nomenclature of each method in the paper.

Panel A Factor Models

PCA Principal component analysis without adding pricing restrictions.
RX& HML RX is the dollar factor and HML is the carry trade factor, see Lustig et al. (2011).

RP-PCA Principal component analysis using the pricing restriction (γ).
that leads to the highest OOS Sharpe ratio

ISR-PCA Equalize mean asset returns and run PCA,
sort factors by eigenvalues from smallest to largest,

then apply pricing restrictions.
SR-PCA Run PCA in the scaled asset returns, then apply pricing restrictions.
Πew Equal-weighted portfolio constructed by ISR-PCA and SR-PCA.
Πow The weight assigned to the portfolio by ISR-PCA and SR-PCA

with the highest in-sample SR.

Panel B Estimates
No Adjust The covariance matrix is estimated from the historical mean return

Panel C Data Sets
LP74 The 74 extreme decile anomaly portfolios analyzed by Lettau and Pelger (2020)

LP370 370 anomaly portfolios analyzed by Lettau and Pelger (2020)
FF25 Fama-French 25 size-B/M sorted portfolios

Panel D Pricing Measures
SR The maximum Sharpe ratio attained with the factors

RMSEα The square root of the average pricing error
σe The percentage of unexplained return variation

GRS GRS test statistic
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Table 2: Correlation of Foreign Exchange Factors

This table reports the correlation coefficients of the top two factors in different FX pricing mod-
els. The factors are constructed at monthly frequency in four numeraire currencies (USD, JPY,
AUD, and GBP) from the data set of 11 developed currencies spanning the period of 1985:1 –
2025:10. RX and HML are base-specific factors from Lustig et al. (2011). Panel A reports the cor-
relations, separately for each numeraire currency, for the top two factors of 5 models with base-
specific factors RX and HML. Panels B reports the cross-numeraire correlations respectively for
base-specific factors RX and HML after converting their numeraire currencies into the US dollar,
computed by dividing the returns of local currency by the exchange rate with respect to the US
dollar from that month.

Panel A
RX-USD HML-USD RX-JPY HML-JPY

PC1-USD 0.99 0.19 PC1-JPY 0.99 0.40
PC2-USD 0.02 0.69 PC2-JPY −0.02 0.31

RP-PCA1-USD 0.99 0.19 RP-PCA1-JPY 0.99 0.40
RP-PCA2-USD −0.02 0.69 RP-PCA2-JPY −0.03 0.31
ISR-PCA1-USD 0.85 −0.02 ISR-PCA1-JPY 0.83 0.18
ISR-PCA2-USD 0.61 0.41 ISR-PCA2-JPY 0.59 0.50
SR-PCA1-USD 0.99 0.24 SR-PCA1-JPY 0.99 0.40
SR-PCA2-USD −0.30 0.53 SR-PCA2-JPY 0.16 0.47

RX-AUD HML-AUD RX-GBP HML-GBP
PC1-AUD 0.99 −0.39 PC1-GBP 0.99 0.09
PC2-AUD 0.01 −0.23 PC2-GBP −0.06 0.70

RP-PCA1-AUD 0.99 −0.39 RP-PCA1-GBP 0.99 0.08
RP-PCA2-AUD −0.01 −0.24 RP-PCA2-GBP −0.05 0.73
ISR-PCA1-AUD 0.92 −0.39 ISR-PCA1-GBP 0.25 −0.35
ISR-PCA2-AUD −0.26 0.26 ISR-PCA2-GBP −0.40 0.05
SR-PCA1-AUD 0.99 −0.37 SR-PCA1-GBP 0.98 −0.03
SR-PCA2-AUD −0.42 0.46 SR-PCA2-GBP 0.39 0.70

Panel B RX-USD RX-JPY RX-AUD RX-GBP
RX-USD 1
RX-JPY 0.17 1

RX-AUD −0.05 −0.31 1
RX-GBP −0.02 −0.14 −0.24 1

HML-USD HML-JPY HML-AUD HML-GBP
HML-USD 1
HML-JPY 0.83 1

HML-AUD 0.86 0.61 1
HML-GBP 0.80 0.54 0.80 1
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Table 3: Currency Portfolios Results

This table reports the point estimates of four different pricing measures for various two-factor FX
pricing models. The individual factors are constructed at monthly frequency in four numeraire
currencies (USD, JPY, AUD, GBP) from the data set of 11 developed currencies spanning the
period of 1985:1 - 2025:10. All point estimates are annualized, p is the p-value of the GRS test
statistic. The description of the nomenclature refers to Table 1. Red font indicates the literature’s
main benchmark model. Blue font indicates the best model in the Table based on the measure
of max Sharpe ratio.

In-Sample Out-of-Sample
SR RMSEα σe GRS p SR RMSEα σe GRS p

Panel A: USD
RX & HML 0.39 0.01 30.68 0.25 0.99 RX & HML 0.09 0.01 23.69 0.40 0.91
PCA 0.24 0.01 23.88 0.23 0.99 PCA 0.08 0.01 24.42 0.42 0.94
RP-PCA 0.24 0.01 23.88 0.22 0.99 RP-PCA 0.09 0.01 24.41 0.42 0.94
ISR-PCA 0.35 0.01 46.20 0.50 0.89 ISR-PCA 0.28 0.01 34.81 0.83 0.60
SR-PCA 0.27 0.01 24.50 0.22 0.99 SR-PCA 0.09 0.01 24.96 0.45 0.92
Πew 0.32 0.01 26.56 0.21 1.00 Πew 0.18 0.01 24.95 0.46 0.92
Πow 0.35 0.01 46.20 0.50 0.89 Πow 0.28 0.01 34.81 0.83 0.60
Panel B: JPY
RX & HML 0.43 0.01 24.40 0.26 0.99 RX & HML 0.18 0.01 17.14 0.57 0.84
PCA 0.21 0.01 16.85 0.33 0.97 PCA 0.31 0.01 17.92 0.34 0.97
RP-PCA 0.21 0.01 16.86 0.33 0.97 RP-PCA 0.32 0.01 17.92 0.34 0.97
ISR-PCA 0.40 0.01 47.84 0.68 0.74 ISR-PCA 0.43 0.01 20.39 0.48 0.90
SR-PCA 0.25 0.01 17.39 0.31 0.98 SR-PCA 0.36 0.01 17.57 0.32 0.98
Πew 0.29 0.01 19.01 0.32 0.98 Πew 0.38 0.01 17.49 0.33 0.97
Πow 0.42 0.01 70.09 0.32 0.98 Πow 0.61 0.02 30.75 1.22 0.27
Panel C: AUD
RX & HML 0.35 0.01 27.41 0.43 0.92 RX & HML 0.01 0.01 31.68 0.38 0.95
PCA 0.21 0.01 20.72 0.30 0.98 PCA 0.15 0.01 27.88 0.40 0.95
RP-PCA 0.23 0.01 20.74 0.29 0.98 RP-PCA 0.18 0.01 27.92 0.40 0.94
ISR-PCA 0.12 0.01 42.44 0.59 0.83 ISR-PCA 0.08 0.01 30.69 0.38 0.95
SR-PCA 0.37 0.00 25.83 0.08 1.00 SR-PCA 0.25 0.01 32.68 0.45 0.92
Πew 0.36 0.00 25.93 0.10 1.00 Πew 0.60 0.01 34.50 0.62 0.79
Πow 0.38 0.00 25.47 0.07 1.00 Πow 0.49 0.01 33.83 0.56 0.85
Panel D: GBP
RX & HML 0.34 0.01 39.04 0.31 0.98 RX & HML 0.11 0.01 33.82 0.37 0.96
PCA 0.17 0.01 32.27 0.46 0.91 PCA 0.13 0.01 38.73 0.40 0.94
RP-PCA 0.20 0.01 32.32 0.42 0.94 RP-PCA 0.27 0.01 38.79 0.42 0.94
ISR-PCA 0.16 0.01 75.18 0.62 0.79 ISR-PCA 0.19 0.01 43.11 0.82 0.60
SR-PCA 0.33 0.01 35.68 0.16 1.00 SR-PCA 0.23 0.01 38.45 0.41 0.94
Πew 0.33 0.01 38.70 0.23 0.99 Πew 0.86 0.01 38.23 0.37 0.96
Πow 0.34 0.01 36.05 0.20 1.00 Πow 0.61 0.01 38.22 0.37 0.96
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Table 4: Lettau-Pelger 74 Portfolio Results

This table reports the point estimates of four different pricing measures for factor models us-
ing the 74 extreme decile anomaly portfolios (Lettau and Pelger (2020)). The sample period is
1963:11- 2024:12 at monthly frequency. All point estimates are at monthly level, p is the p-value
of the GRS test statistic. The pricing restrictions term γ applied in this table is the γ that gener-
ates the best SR. The description of the nomenclature refers to Table 1. Red font indicates the
literature’s main benchmark model. Blue font indicates the best model in the Table based on the
measure of max Sharpe ratio.

In-Sample Out-of-Sample
SR RMSEα σe GRS p SR RMSEα σe GRS p

Panel A: 3-Factor
PCA 0.18 0.30 16.37 6.30 0 PCA 0.15 0.31 18.34 5.63 0
RP-PCA 0.37 0.27 16.70 4.95 0 RP-PCA 0.10 0.32 18.34 5.79 0
ISR-PCA 0.32 0.57 93.89 5.35 0 ISR-PCA 0.41 0.27 20.59 4.41 0
SR-PCA 0.45 0.27 17.14 4.23 0 SR-PCA 0.09 0.34 18.40 5.49 0
Πew 0.44 0.26 17.29 4.23 0 Πew 0.01 0.36 18.29 5.64 0
Πow 0.45 0.27 17.14 4.23 0 Πow 0.09 0.34 18.40 5.49 0

Panel B: 5-Factor
PCA 0.28 0.24 12.39 5.65 0 PCA 0.30 0.24 13.55 5.14 0
RP-PCA 0.45 0.23 12.52 4.18 0 RP-PCA 0.45 0.24 13.57 5.05 0
ISR-PCA 0.35 0.62 76.55 5.13 0 ISR-PCA 0.48 0.23 16.31 4.49 0
SR-PCA 0.49 0.24 12.86 3.80 0 SR-PCA 0.55 0.23 13.71 5.10 0
Πew 0.47 0.23 12.99 3.95 0 Πew 0.29 0.23 13.75 4.90 0
Πow 0.49 0.24 12.86 3.80 0 Πow 0.55 0.23 13.72 5.11 0
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Table 5: Lettau-Pelger 370 Portfolio Results

This table reports the point estimates of four different pricing measures for factor models using
the 370 anomaly portfolios (Lettau and Pelger (2020)). The sample period is 1963:11- 2024:12
at monthly frequency. All point estimates are at monthly level, p is the p-value of the GRS test
statistic. The pricing restrictions term γ applied in this table is the γ that generates the best SR.
The description of the nomenclature refers to Table 1. Red font indicates the literature’s main
benchmark model. Blue font indicates the best model in the Table based on the measure of max
Sharpe ratio.

In-Sample Out-of-Sample
SR RMSEα σe GRS p SR RMSEα σe GRS p

Panel A: 3-Factor
PCA 0.18 0.17 14.45 2.12 0 PCA 0.22 0.17 16.14 3.13 0
RP-PCA 0.24 0.17 14.50 2.05 0 RP-PCA 0.19 0.17 16.16 3.13 0
ISR-PCA 0.36 0.53 96.91 1.87 0 ISR-PCA 0.13 0.21 18.56 2.82 0
SR-PCA 0.40 0.18 15.19 1.81 0 SR-PCA 0.16 0.18 16.28 3.04 0
Πew 0.40 0.19 15.20 1.79 0 Πew 0.15 0.17 16.28 3.02 0
Πow 0.40 0.18 15.19 1.81 0 Πow 0.21 0.17 16.29 3.04 0

Panel B: 5-Factor
PCA 0.23 0.15 12.08 2.05 0 PCA 0.26 0.15 13.02 3.07 0
RP-PCA 0.34 0.15 12.12 1.89 0 RP-PCA 0.37 0.15 13.03 3.06 0
ISR-PCA 0.37 0.47 92.40 1.86 0 ISR-PCA 0.16 0.18 15.10 2.84 0
SR-PCA 0.44 0.17 12.28 1.74 0 SR-PCA 0.37 0.15 12.95 3.03 0
Πew 0.44 0.17 12.31 1.72 0 Πew 0.20 0.15 12.95 3.05 0
Πow 0.44 0.17 12.28 1.74 0 Πow 0.37 0.15 12.95 3.01 0
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Table 6: Fama-French 25 Portfolio Results

This table reports the point estimates of four different pricing measures for factor models us-
ing the Fama-French 25 size-B/M sorted portfolios. The sample period is 1963:11- 2024:12 at
monthly frequency. All point estimates are at monthly level, p is the p-value of the GRS test
statistic. The pricing restrictions term γ applied in this table is the γ that generates the best SR.
The description of the nomenclature refers to Table 1. Red font indicates the literature’s main
benchmark model. Blue font indicates the best model in the Table based on the measure of max
Sharpe ratio.

In-Sample Out-of-Sample
SR RMSEα σe GRS p SR RMSEα σe GRS p

Panel A: 3-Factor
PCA 0.25 0.14 6.62 4.05 0 PCA 0.25 0.17 7.20 6.02 0
RP-PCA 0.26 0.14 6.63 3.93 0 RP-PCA 0.25 0.17 7.21 6.04 0
ISR-PCA 0.10 1.05 96.69 5.85 0 ISR-PCA 0.23 0.29 19.58 6.03 0
SR-PCA 0.25 0.15 6.71 4.06 0 SR-PCA 0.24 0.17 7.24 6.35 0
Πew 0.25 0.15 7.06 4.08 0 Πew 0.24 0.17 7.25 6.36 0
Πow 0.25 0.15 6.71 4.06 0 Πow 0.24 0.17 7.24 6.35 0

Panel B: 5-Factor
PCA 0.28 0.12 4.66 3.57 0 PCA 0.28 0.15 4.92 5.75 0
RP-PCA 0.36 0.10 4.72 2.16 0 RP-PCA 0.34 0.14 4.92 5.22 0
ISR-PCA 0.18 0.79 86.62 5.06 0 ISR-PCA 0.27 0.26 15.76 6.86 0
SR-PCA 0.37 0.10 4.81 2.09 0 SR-PCA 0.28 0.16 4.98 5.97 0
Πew 0.33 0.10 5.36 2.79 0 Πew 0.28 0.16 5.04 6.14 0
Πow 0.37 0.10 4.81 2.09 0 Πow 0.28 0.16 4.98 5.97 0
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Figure 1: The Time Series of the Optimal γ of the Currency Carry Trade Return Data: USD
Base. This plot shows the time series of the γ in each out-of-sample period that leads to the
optimal Sharpe ratios for the USD base. The γ is based on the covariance matrix adjusted for
their eigenvalues.
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Figure 2: The Time Series of the Optimal γ of the Stock Portfolio Return Data: LP74. This plot
shows the time series of the γ in each out-of-sample period that leads to the optimal Sharpe
ratios for the LP74 test asset. The γ is based on the covariance matrix adjusted for their eigen-
values.

38



B Further Data and Empirical Details

B.1 The Training Procedure for the Pricing Restriction Parameter

We follow the approach of Lettau and Pelger (2020) to impose the pricing restriction parame-

ter γ to regularize the cross-sectional pricing errors and integrate it with the standard principal

component analysis. The objective function of this optimization is specified in (12). We fur-

ther employs the following training procedure to determine γ dynamically. Given a data set of

generic traded asset returns, the procedure trains the optimal γ to obtain the optimal out-of-

sample Sharpe ratios based on K factors. We employ K = 5 in the equity return data and K = 2

in the FX data are as follows.

1. We begin with an initial 240-month training window (t = 0). In the initial We use the

information from the initial 240-month training window to forecast returns for month t = 1

across different numerical values inserted into the pricing restriction parameter γ.21 That

is, we form the out-of-sample factor in month 1 by

FOOS(t = 1) = X(t = 1)Λ(t → 0, γt=1) (23)

We then record the out-of-sample Sharpe ratio of the K-factor model, SROOS,t=1, from the

out-of-sample factor FOOS(t = 1) and identify the optimal γt=1 that maximizes SROOS,t=1.

2. We expand the training window by one month (now 241 months) and repeat the process

to forecast returns for t = 2. That is, we form the out-of-sample factor in month 2 by

FOOS(t = 2) = X(t = 2)Λ(t → 1, γt=2) (24)

We compute SROOS,t=2 from the out-of-sample factor FOOS(t = 2) and select the corre-

sponding optimal γt=2.

3. We repeat steps 1 and 2 as above until the end of the observations in the sample. In this

way, we obtain a time series of γ with each observation the optimal γ that generates the

highest out-of-sample Sharpe ratios for the K-factor model at each time point and a time

21The pricing-restriction parameter is searched over [−1, 15] for LP74, [−1, 10] for LP370, and [−1, 50] for FF25 and
all four FX data sets. The difference in search ranges is due to different computational constraints in different data
sets. Moreover, for all data sets and all methods, γ at each time point rarely exceeds 20.
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series of out-of-sample Sharpe ratios SROOS .

To illustrate how the pricing restriction evolves across the time, we plot the time series of

the optimal γ for the 2-factor models of RP-PCA, ISR-PCA, and SR-PCA in the carry trade return

data without adjusting the eigenvalues are in Figure 1. We plot of the optimal γ for the 5-factor

models of RP-PCA, ISR-PCA, and SR-PCA in the equity data without adjusting the eigenvalues in

Figure 2.

From the time series plot of the pricing restriction parameter γ in the carry trade portfo-

lio data, we observe that for most of the time, the optimal γ is chosen to be −1, meaning that

there is not any pricing restriction incurred in the covariance matrix when estimating the out-

of-sample Sharpe ratio during the training process. However, for ISR-PCA, we observe that the

optimal γ spikes around the middle of the sample period, which indicates that adding the pric-

ing restriction helps to partially stabilize the estimation of out-of-sample Sharpe ratios.

From the time series plot of the pricing restriction parameter γ in the carry trade portfolio

data, we observe that for most of the time, the optimal γ is also chosen to be −1. However,

compared to the case in the carry trade return data, there are much more number of months in

which the optimal γ spikes up than the case in the carry trade return data. One reason is that

there might be much more noise in the stock factor portfolio return data, so adding the pricing

restriction helps to stabilize the estimation of the out-of-sample Sharpe ratio more than in the

carry trade return data.

We also describe the technique to construct the portfolio that combines the ISR-PCA and SR-

PCA methods, such that the combined portfolio, if finding the optimal weight, should deliver a

higher Sharpe ratio than the individual portfolio. We apply the weight of w1 to ISR-PCA factor

and 1−w1 to SR-PCA factor to combine them into a new factor, where we construct ISR-PCA and

SR-PCA factors with the γ in the procedures above. In particular,

• Πew: Apply w1 = 0.5 to both the ISR-PCA and SR-PCA factors.

• Πow: Apply the weightw1 to the combined factor that earns the maximum in-sample Sharpe

ratios of K = 5 in equity return data and K = 2 in the FX data.

The optimal weight applied to ISR-PCA in each data set is as follows: USD Base is 1. JPY Base is

1.05. AUD Base is 0.4. GBP Base is 0.35. LP74 is 0. LP370 is 0.02. FF25 is 0. These optimal weights

indicate that in most data sets, the training algorithm determines that the best combination
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of model that generates the highest in-sample Sharpe ratio is either pure ISR-PCA (USD, JPY)

or pure SR-PCA (LP74, LP370, FF25). Only in AUD or GBP does the algorithm determine the

optimal combination of the two models is different from the pure ISR-PCA and SR-PCA. Finally,

this optimal weight is determined using the covariance matrix without further adjusting for their

eigenvalues.

The in-sample Sharpe ratios of the combined portfolio from the ISR-PCA and SR-PCA factor

are computed as follows,

1. Denote γISR−PCA as the γ applied to ISR-PCA and γSR−PCA as the γ applied to SR-PCA.

The in-sample results are computed using the full sample. A single value of γ searched

over the interval [−1, 50] is selected and then used to estimate the factors that maximize

the in-sample Sharpe ratio across the entire sample period.

2. The equally-weighted combined factor is by applying w1 = 0.5 to ISR-PCA and w2 = 0.5 to

SR-PCA. The equal-weight factor is

Πew = 0.5FISR−PCA + 0.5FSR−PCA (25)

To search for the weight w∗
1 that leads to the optimal in-sample Sharpe ratio of the com-

bined factor, we denote w1 ≡ Σ−1
ISRµ as the optimal weight applied to ISR-PCA, and insert

the numerical values over the range of −2 and 2 and determine which numerical value

inserted into w1 generates the best in-sample Sharpe ratio. That optimal-weight factor is

Πow = w∗
1FISR−PCA + (1− w∗

1)FSR−PCA (26)

To compute the out-of-sample Sharpe ratios from Πew and Πow generated above, we imple-

ment the steps that produce the results as follows,

1. We start with the initial window of 240 months, denote month 240 as time 0 have a loading

matrix ΛOW,0 (in the optimal weight) and or ΛEW,0 (in the equal weight), predict the return

in the month 1 as the first out-of-sample period. We have the first observation of the out-

of-sample Sharpe ratio.

2. The length of the training window becomes 241 months, and we now predict the return

in month 2 with ΛOW,1 (in the optimal weight) and or ΛEW,1 (in the equal weight). We
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have the second observation of the out-of-sample Sharpe ratio. In these steps, we form the

equal-weighted and optimal-weighted combined factors as

Πew(w1, γ) =0.5XΛISR(γEW ) + 0.5XΛSR(γEW )

Πow(w1, γ) =w1XΛISR(γOW ) + (1− w1)XΛSR(γOW )
(27)

Where γEW and γOW are the optimal γ that should apply to this equal-weighted or optimal-

weighted combined factors, which are different from the γ applied to the individual factors

of ISR-PCA or SR-PCA.

3. We repeat this process until the end of the observation. We compute the time-series aver-

age of the out-of-sample Sharpe ratio as our out-of-sample results.

B.2 Pricing Measures

For a self-contained connection between actual test statistics and the conceptual description of

the moment-fusing framework, we briefly describe the SR estimate and basic features of pricing

measures employed in our empirical analysis. We consider a given pricing model GK character-

ized by K traded pricing factors {Πi}Ki=1 and a set of N test assets {Xn}Nn=1. Factors are linear

in asset returns, Π = XW (with the demeaned version, Π̃ = ‹XW ), where matrix XT×N stacks

N asset returns, and matrix ΠT×K stacks K factors, into their columns. Matrix WN×K contains

the weights of factors on assets in the model. Inversely, the loadings of assets on given factors

can be estimated by a least-squares (linear regression) procedure Xtn = αn+
∑K

k=1Πtkβkn+ εtn,

n ∈ {1, . . . , N}, or in matrix form (stacking asset returns into columns),

XT×N = 1T×1α1×N +ΠT×KβK×N + εT×N . (28)

SinceGK prices traded factors by construction, the model can also be characterized by a market-

based SDF MK∥ (with demeaned version M̃K∥) that is linear in the traded factors,

M̃K∥ = −Π̃
î
1
T Π̃

′Π̃
ó−1

µ′
Π, where 1 × K vector µΠ contains the means (or risk premia) of K fac-

tors.22

To assess a pricing factor model, we employ four pricing measures that quantify various pric-

22Recall that asset returns are excess returns. As a result, the means of traded factors that are linear in asset returns
are also excess returns (risk premia) of the factors.
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ing performance aspects of the model and are standard to the literature. The four measures are

(i) the maximum attainable Sharpe ratio, (ii) root-mean-square pricing error, (iii) Gibbons-Ross-

Shanken (GRS) test statistic, and (iv) percentage of unexplained (idiosyncratic) return variation.

Maximum attainable Sharpe ratio (max SR): The max SR of the model GK , denoted hereafter

as maxSR(GK), is the highest possible SR that a portfolio spanned by its K factors can attain.

Since GK prices traded factors by construction, this max SR also equals the volatility of the

market-based SDF MK∥ defined above, maxSR(GK) =
»

V ar
[
MK∥

]
. In the premise where

factors {Πn}Kn=1 are mutually uncorrelated (or factors are re-orthogonalized) such as PCA, the

max (squared) SR equals the sum of squared SR of factors

[maxSR(GK)]2 =

K∑
n=1

(SR [Πn])
2 , with Πkt =

N∑
n=1

XntWnk. (29)

When all factors are retained (K = N ), Proposition 1 implies that maxSR(G) is invariant to the

choice of return basis (and hence, also invariant to the set of factors resulted from that basis).

When only a limited number of factors is retained (K < N ), both the choices of asset return

basis and retained factors matter for the maxSR(GK). That is, a need for the dimensionality re-

duction also motivates a performance comparison between different pricing models. Generally,

a pricing model of higher max SR is desirable because it indicates that important risks (those

having higher prices) are priced by the model.

Root-mean-square pricing error (RMSE): The pricing errors of assets in model GK are the dif-

ferences between assets’ mean excess returns and assets’ risk premia (priced by factors in the

model). Since the risk premia are quantified by the covariance between asset returns and model’s

SDF, the pricing error αn for a particular test asset Xn (or 1 × N vector α for N asset tests in

{Xn}Nn=1) and their RMSE (denoted as RMSEα) in model GK are respectively

αn = µxn + M̃ ′
K∥
›Xn = µxn − µ′

ΠΠ̃

ï
1

T
Π̃′Π̃

ò−1 ‹Xn, α = µx − µ′
ΠΠ̃

ï
1

T
Π̃′Π̃

ò−1 ‹X
RMSEα =

1

N

[
N∑

n=1

α2
n

] 1
2

=
1

N

√
αα′. (30)

Evidently, a pricing model of lower RMSE is desirable because it indicates a higher pricing abil-

ity of the model’s factors. Note that RMSE is amenable to the choice of return basis. Given an

asset return space and the same set of factors {Πn}Kn=1, RMSEα varies with a specific choice of
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test assets (spanning the given return space). Specifically, maintaining the same pricing model

{Πn}Kn=1 while transforming the test assets by an uniform leverage operation on their excess

returns Yn = κXn, n ∈ {1, . . . , N} (2) scales linearly (hence arbitrarily, via the choice of κ),

RMSEα(Y ) = κRMSEα(X). With regard to this amenability, our empirical analysis employ

both original and transformed returns as test assets for robustness. Similar to maxSR(GK),

RMSEα are computed in sample as well as out of sample, employing factors’ in-sample weights

but respectively in-sample and OOS asset returns.

GRS test statistic: Another pricing measure is the GRS test statistic, which generalizes the mean-

variance efficiency test for the one-factor CAPM to a K-linear factor model employing N test

assets (28). The GRS null hypothesis is that all pricing errors α’s in (28) are jointly zero, or K

factors suffice to capture all systematic risks impacting N test assets. Under the assumption that

disturbances are jointly normally and independently distributed with zero means and N × N

invertible covariance matrix Σε, then the GRS test statistic defined as

GRS =
T

N
× T −N −K

T −K − 1
× α̂Σ̂−1

ε α̂′

1 + µ′
ΠΣ̂

−1
Π µΠ

, (31)

follow a F -distribution with N and T −N −K degrees of freedom (or, FN,T−N−K) under the null

hypothesis. In (31), Σ̂Π = 1
T Π̃

′Π̃, and Σ̂ε = ε̂′ε̂
T−K−1 , and ε̂ and α̂ are least squares estimates from

(28). A statistically sufficiently high value of GRS test statistic (quantified by a small enough

p-value) is desirable as it indicates a no rejection for the null hypothesis (under which pricing

errors are zero in the K-factor model).

Percentage of unexplained return variation: Under model GK , the covariation between test

asset returns and K factors are the explained (systematic) part of asset return variation, the re-

maining is unexplained (idiosyncratic) part. Given the representation (28) of the linear factor

model, the unexplained part, denoted as σe, is computed as complementary component of the

explained part (all in %) as follows

σe = 1−
∑N

n=1

∑K
k=1Covar

Ä
Xn,Πkβ̂kn

ä
∑N

n=1 V ar (Xn)
= 1−

Trace
î‹X ′ Π̃β̂

ó
Trace

î‹X ′‹Xó , (32)

where β̂’s are least squares estimates for the asset loadings on factors (28). When factors {Πn}Kn=1

are mutually uncorrelated (or factors are re-orthogonalized) such as PCs, the % of unexplained

return variation becomes σe = 1 −
∑K

k=1 λk∑N
k=n λN

, where λn = V ar (Πn), n ∈ {1, . . . , N}. Evidently,
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a pricing model of lower σe is desirable (i.e., a larger part of test asset returns’ variations can

be explained by their exposures to K retained factors). However, the % of unexplained return

variation σe does not explicitly account for pricing errors (i.e., first moment of returns) and is

amenable to the choice of return basis and leverage operations on factors (Πn(κn) = κnΠn,

n ∈ {1, . . . , N}, i.e., Πn(κn) and Πn represent the same risk. Accordingly, our empirical analy-

sis examines moment-fusing constructions with return bases informed by first moment of re-

turns, and given the amenability of σe and RMSE in this process, focuses on maxSR as a primary

pricing measure.

B.3 Equity Characteristics

Our equity data follows Lettau and Pelger (2020)’s employment of 74 and 370 extreme-decile

anomaly portfolios (LP74 and LP370), which concern 37 underlying characteristics. They are:

(1) Industry Relative Reversals, (2) Industry Momentum-Reversals, (3) Industry Relative Rever-

sals, (4) Seasonality, (5) Value-Profitability, (6) 12-Month Momentum, (7) Value-Momentum-

Profitability, (8) Investments Scaled by Assets, (9) Composite Issuance, (10) Investment Growth,

(11) Sales/Price, (12) Earnings/Price, (13) Net Operating Assets, (14) Accrual, (15) Value (An-

nual), (16) Gross Profitability, (17) Asset Turnover, (18) Value-Momentum, (19) Cash Flows/Price,

(20) Momentum-Reversals, (21) Asset Growth, (22) Long-Run Reversals, (23) Industry Momen-

tum, (24) Idiosyncratic Volatility, (25) Value (Monthly), (26) Short-Term Reversals, (27) Size, (28)

6-Month Momentum, (29) Leverage, (30) Return on Assets, (31) Dividend/Price Ratio, (32) In-

vestment/Capital, (33) Return on Book Equity, (34) Sales Growth, (35) Gross Margins, (36) Share

Volume, (37) Price.

Among 37 characteristics listed above, 14 are constructed from price measures, including (1),

(2), (3), (4), (6), (7), (18), (20), (22), (23), (26), (27), (28), (37). Those price measures are closely re-

lated to the momentum and reversal characteristics. Lettau and Pelger (2020) document that the

portfolio returns constructed by those measures, especially when they are related to reversals,

load heavily on the 5th RP-PCA factor that has a high Sharpe ratio of monthly values averaging

around 0.46.

Other 21 characteristics among the listed are constructed from accounting measures, includ-

ing (5), (8), (9), (10), (11), (12), (13), (14), (15), (16), (17), (19), (21), (25), (29), (30), (31), (32),

(33), (34), (35). Valuation and profitability measures are the main components of the account-
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ing characteristics in the sample and concern 9 out of those 21 characteristics, including (5),

(11), (12), (15), (16), (25), (31), (33), (35). Lettau and Pelger (2020) document that the portfolio

returns constructed by the valuation characteristics load heavily on the 3rd RP-PCA factor that

has a modest Sharpe ratio of monthly values averaging around 0.06. Portfolio returns associated

with other characteristics do not appear to load heavily on the 3th RP-PCA factor. Investment-

related measures concern 4 of the 21 characteristics listed above, including (8), (10), (21), (32).

Portfolio returns associated with these 4 characteristics do not load heavily on RP-PCA factors

that have high Sharpe ratios Lettau and Pelger (2020). The trading liquidity concerns the other 2

characteristics, namely, (24) and (36).
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