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Abstract. We use principal component analysis on 55 bilateral exchange rates of 11 de-
veloped currencies to identify two important global risk sources in foreign exchange (FX)
markets. The risk sources are related to Carry and Dollar but are not spanned by these
factors. We estimate the market prices associated with the two risk sources in the cross-
section of FX market returns and construct FX market-implied country-specific stochastic
discount factors (SDFs). The SDF volatilities are related to interest rates and expected carry
trade returns in the cross-section. The SDFs price international stock returns and are related
to important financial stress indicators and macroeconomic fundamentals. The first
principal risk is associated with the Treasury-EuroDollar (TED) spread, quantities mea-
suring volatility, tail and contagion risks, and future economic growth. It earns a relatively
small implied Sharpe ratio. The second principal risk is associated with the default and
term spreads and quantities capturing volatility and illiquidity risks. It further correlates
with future changes in the long-term interest rate and earns a large implied Sharpe ratio.

History: Accepted by Lauren Cohen, finance.
Supplemental Material: Data and the online appendix are available at https://doi.org/10.1287/mnsc.2018.3109.

Keywords: international finance • FX • currency risk • carry trade • stochastic discount factor (SDF) • permanent • transitory •
principal component • international stock markets • macroeconomic fundamental • financial stress indicator

1. Introduction
Understanding risks and their pricing implications in
foreign exchange (FX) markets is important. We use
principal component analysis (PCA) on 55 bilateral
exchange rate growths of 11 developed currencies to
identify the major risk sources.We focus on the first two
principal components (PCs) as risk sources because they
capture the most important common variation in all
bilateral exchange rates according to the Eigenvalue and
Growth Ratio criterions by Ahn and Horenstein (2013).
We find that our identified risk sources have some
overlapwith theCarry andDollar factors, but the relation
to the Dollar is weaker.1 Moreover, our risk sources are
not fully spanned by the Carry and Dollar factors.

In a second step, we use the fundamental economic
identity that an exchange rate is equal to the ratio of
its corresponding country-specific stochastic discount
factors (SDFs) and take expectations to derive a cross-
sectional relationship between expected FX market
returns and market prices of our identified risk sources.
This allows us to estimate market prices of risk and
construct FX market-implied country-specific SDFs. The
theoretical identity between exchange rates and SDFs
naturally arises in frictionless, fully integrated, and
arbitrage-free internationalfinancialmarkets (e.g., Brandt
et al. 2006 and Maurer and Tran 2017a, b). Moreover,

a nice feature of this relationship is that every shock in FX
markets must be a shock to (at least one) SDF and is
priced. This is in stark contrast to other asset classes, such
as stock markets for instance, in which shocks can be
priced or idiosyncratic.
Most FX market research focuses on risk pricing in

U.S. dollars (USDs). However, setting the USD as the
base currency implicitly biases the analysis toward
risks that are specifically important to a U.S. investor
but not necessarily to investors in other countries or
from a global perspective. That is, these risks may be
compensated by potentially insignificant market prices
in a global context. For instance, Lustig et al. (2011) use
PCA on exchange rates quoted against the USD and
find that the market price of risk of the first PC (also
known as the Dollar factor) is small. That is, although
the first PC captures most of the time-series variation in
exchange rates, it does not explain the cross-section of
expected returns, which confirms our concern.
We argue that global risks are better identified if we

use all bilateral exchange rates (i.e., not only quoted
against one base currency) in the PCA. Of course, the
set of exchange rates quoted against the USD implies all
bilateral exchange rates. However, the PCA strongly
focuses on USD-specific shocks when only exchange
rates quoted against the USD are used, whereas the
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PCA on all bilateral exchange rates is impartial in
weighting shocks across all exchange rates, which bal-
ances the impact of shocks specific to any one country
and highlights global risks.2

Our estimated SDFs have several intersecting impli-
cations. We find that the implied SDFs increase during
historically bad times, such as the Asian financial crisis,
Russian sovereign default and the bailout of Long-Term
Capital Management, the default of Lehman Brothers
and the financial crisis, and the bailouts of Greece and
the European sovereign debt crisis. Moreover, we show
that currencies with lower interest rates have more
volatile SDFs, and the carry trade of borrowing cur-
rencies associated with more volatile SDFs and lending
currencies associatedwith less volatile SDFs is profitable.

We further use the nonparametric approach of
Christensen (2017) to decompose our estimated SDFs
into permanent and transitory components and show
that these components satisfy the theoretical bounds
derived by Alvarez and Jermann (2005). This approach
also provides uswith a nonparametric estimate of long-
term bond yields for each country. We find that these
estimated yields are close to the data, which is in-
teresting because our estimation did not use any in-
formation about long-term bonds (but only exchange
rates and short-term bonds). Moreover, we estimate
a theoretical relationship provided by Lustig et al. (2017)
between long-term bond excess returns and entropies of
the permanent SDF components across countries and
find that this relationship holds in our estimated model.

In additional out-of-sample tests, we show that our
estimated SDFs price international stock returns. In
particular, we show that our first two PCs from FX
market data capture only approximately 10% of the
time-series variation in international stock returns
(when denominated in local currency) but explain
approximately 30% of the historical equity premia
across countries. Moreover, the cross-sectional corre-
lation between the risk premia implied by our SDFs
and historical premia is 67%. We further use Fama and
MacBeth (1973) regressions to estimate the market
prices of risk of our first two FX market PCs in the
cross-section of international stock returns. The esti-
mated market prices are large and highly significant
even after controlling for popular pricing factors, such
as the world market portfolio, the five global Fama and
French (2015) factors, global momentum, and the Dollar
and Carry factors. The market prices estimated in the
cross-section of stock returns are comparable to the ones
estimated in the cross-section of FX returns. We further
find that the second PC is more important as a pricing
factor than the first PC.

Furthermore, we document that our estimated SDF
in the United States correlates with a broad set of U.S.-
specific financial stress indicators. We also document
that the first FX market PC is related to the TED spread

and variables that quantify volatility, tail, and conta-
gion risk. In contrast, the second PC is associated with
the default and term spreads and stress indicators that
measure volatility and illiquidity.
Finally we test the relationship between our esti-

mated SDFs and macroeconomic fundamentals. We
confirm our economic intuition that an increase in
the SDF (bad shock) has a negative effect on several
measures of economic growth, has a negative effect on
short- and long-term interest rates, and increases un-
employment. We further document that the first FX
market PC is associated with a broad set of macro-
economic fundamentals that mostly capture economic
growth. The second PC is weakly related to most
macroeconomic quantities but has a significant asso-
ciation with changes in the long-term interest rate.

1.1. Related Literature
The framework connectingmoments of SDF growths to
exchange rates is for instance suggested by Bekaert and
Hodrick (1992), Bekaert (1996), and Backus et al. (2001).
Lustig and Verdelhan (2007, 2011) and Burnside (2011,
2012) discuss the connection between carry trade
returns and aggregate consumption growth (con-
sumption capital asset pricing model) and other pop-
ular asset pricing factors, which are known to explain
the cross-section of stock returns. Recently a large body
of literature has emerged introducing new currency
risk factors: Carry factor (Lustig et al. 2011), global
volatility factor (Menkhoff et al. 2012a, b), global
currency skewness factor (Rafferty 2012), FX correla-
tion risk factor (Mueller et al. 2013), Dollar factor (Lustig
et al. 2014, Verdelhan 2015), Euro factor (Greenaway-
McGrevy et al. 2016), downside beta risk factor (Galsband
andNitschka 2013, Dobrynskaya 2014, Lettau et al. 2014),
FX liquidity risk factor (Mancini et al. 2013), economic
size factor (Hassan 2013), and surplus-consumption
risk factor (Riddiough 2014). Some recent papers link
some of these factors to macroeconomic conditions and
explore what conditions are associated with “safe ha-
ven” properties of currencies (e.g., Cenedese 2012,
Habib and Stracca 2012, Dobrynskaya 2015, Dahlquis
and Hasseltoft 2017, and Berg and Mark 2018, to
name a few). Daniel et al. (2014) shows that Dollar-
neutral carry trades and strategies with a Dollar expo-
sure are different, and the aforementioned factors
seem to explain only Dollar-neutral returns. Bekaert and
Panayotov (2016) show that excluding the Australian
dollar (AUD), Japanese yen (JPY), and Norwegian
krone from the asset universe substantially improves
the Sharpe ratio and lowers the downside risk of carry
trade strategies.
Another body of literature uses and examines sta-

tistical approaches to build factors. Meese and Rogoff
(1983) challenge structural models for exchange rates
and show that these models are unable to outperform

Maurer, Tô, and Tran: Pricing Risks Across Currency Denominations
Management Science, 2019, vol. 65, no. 11, pp. 5308–5336, © 2019 INFORMS 5309



a simple random walk model. Bakshi and Panayotov
(2013) show that time-series predictability of carry
trades is significant for dynamic currency portfolios
(while being absent in fixed currency pairs). Koedij and
Schotman (1989) use PCA to build groups of currencies
with similar characteristics and single out four lead-
ing currencies: the U.S. dollar (USD), JPY, Deutsche
mark, and British pound. Similarly, Greenaway-
McGrevy et al. (2012) show that the JPY/USD,
euro (EUR)/USD and British pound/USD exchange
rates capture most of the variation in 23 exchange rates.
Engel et al. (2007) estimate a factor model that is able to
predict exchange rates at long horizons in the sample
after 1999 but not in earlier samples. Sarno et al. (2012)
estimate an affinemulticurrencymodel with four latent
variables that explains exchange rate fluctuations. Dong
(2006) estimates a vector autoregression (VAR) model
and finds that inflation and output gap are important to
exchange rate dynamics. Rapach and Wohar (2006) and
Maasoumi and Bulut (2012) test several exchange rate
factor models and conclude that it is hard to consistently
outperform a simple random walk model.3

We use PCA on all bilateral exchange rates to
identify major risk sources and a cross-sectional re-
gression of FX market returns to construct country-
specific SDFs. An advantage of our approach over other
empirical factor models is that we are able to provide
a clear theoretical setup to identify risk sources using
the theoretical relationship between exchange rates
and SDFs. As a comparisonwe focus on the well-known
and dominant Dollar and Carry factors as a benchmark.
We show that our factors and estimated SDFs capture
important risks not spanned by the Dollar–Carry two-
factor model. Moreover, we related our PCs to financial
stress indicators and macroeconomic fundamentals. We
show that the first PC is related to the TED spread and
quantities thatmeasure volatility and contagion risk and
economic growth, whereas the second PC is related to
the default and term spreads and variables that measure
volatility and illiquidity and to changes in the long-term
interest rate.

Our paper is also related to the literature that links
FX markets and stock returns. Solnik (1974) was ar-
guably the first to theoretically show that an FX market
factor is important in an international capital asset
pricing model (CAPM). Dumas and Solnik (1995) es-
timate market prices of a four-factor model (world
stock market portfolio and three exchange rates).
Bekaert and Hodrick (1992) analyze predictable com-
ponents in FX and stock returns and estimate a VAR
model. Patro et al. (2002) introduce a two-factor model
(world stock index and a currency basket) to explain
stock market returns across developed countries. Fama
and French (2015) test an international five-factor model
(based on size and valuation ratios). Brusa et al. (2015)
introduce an international CAPMmodelwith one global

stockmarket factor and two currency factors (Dollar and
Carry), which does a better job pricing a broad set
of international assets than other international factor
models. We show that our first two PCs of 55 bilateral
exchange rates are important to price stocks and earn
large market prices in the cross-section of stock returns,
even after controlling for the world market, global
Fama–French, global momentum, and Dollar and Carry
factors.
Finally, on the basis of our estimation approach

Maurer et al. (2017) construct a dynamic trading
strategy and find that the strategy earns a large Sharpe
ratio out of sample and outperforms many popular
currency trading strategies across various performance
measures and subsamples.
Our paper is structured as follows. Section 2 presents

our estimation approach to construct SDFs from priced
risks in FXmarkets. Section 3 implements the approach
in the data and investigates model implications and in-
sample evidence. Section 4 investigates out-of-sample
evidence supporting thevalidity of our estimation. Section5
concludes. The online appendix provides additional
results, lists details on data sources, and provides
derivations for theoretical results in the paper.

2. SDF Estimation from FX Market Data
In this section we present key steps to estimate country-
specific SDFs from FX data and the PCA.We then relate
our estimation procedure to the standard Fama and
MacBeth (1973) regression of factor pricing models.

2.1. Setup
We model N + 1 countries (or currencies) indexed by
I ∈ {1, . . . ,N + 1}. We focus on diffusion risks.Weuse the
standard filtered probability space {Ω, ^, {^t}t≥0,P},
wherein {^t}t≥0 is the natural filtration associated with
the n-dimensional standard Brownian motion Zt as
diffusion risks in the market. Our specification as-
sumptions for the diffusion model of FX market risks
are: (A1) no-arbitrage, (A2) complete and frictionless
financial markets, (A3) diffusion processes of exchange
rates, and (A4) sufficient stationarity in the exchange
rate processes (for the time windows of our study).4

The market completeness and the continuous-time
setting (i.e., the diffusion risk specification) are con-
venient assumptions and can be relaxed by replacing
SDFs by their respective projectors.5

The risk pricing in country I’s currency is charac-
terized by the country-specific SDF MI ,

dMt,I

Mt,I
� −rIdt − ηTI dZt, ∀I, t. (1)

The drift and volatility of SDF growths are country I’s
instantaneously risk-free rate rI ∈R and the prices of n
diffusion risks ηI ∈Rn, respectively. Let the exchange
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rate EXt,J/I be the number of units of currency J that
buys one unit of currency I at time t. Market com-
pleteness implies that the exchange rate equals the ratio
of SDFs, EXt,J/I � Mt,I/Mt,J , ∀I, J. From this follows the
exchange rate growths,

dEXt, J/I

EXt, J/I
� [rJ − rI + ηTJ ΔηJ/I]dt + ΔηTJ/IdZt, where

ΔηJ/I ≡ ηJ − ηI. (2)

To see how exchange rate risks are priced in asset
markets, we consider a typical net-zero carry trade
strategy from the perspective of currency denomina-
tion I, whichwe take as USD in this paper. At time t, the
strategy borrows currency B (paying interest rate rB)
and lends currency L (paying interest rate rL). At t + dt,
liquidating all positions and converting the payoff
to the denomination currency I yields the realized
excess return CTI

t+dt,−B/+L and the expected value
ECTI

−B/+L,

CTI
t+dt,−B/+L � ηTI ΔηB/Ldt + ΔηTB/LdZt,

ECTI
−B/+L � ηTI ΔηB/Ldt, ΔηB/L ≡ ηB − ηL.

(3)

We observe that the innovation structures in exchange
rates (2) and realized carry trade returns (3) are iden-
tical, because both are driven by the differential prices
of risks of the form Δηt,C/D ≡ ηt,C − ηt,D. Motivated by
this observation, we apply the PCA directly on the
denomination-free exchange rate covariance matrix (as
opposed to the covariancematrix of carry trade returns)
to identify important risk factors in FX markets in our
construction of SDFs below.

2.2. SDF Estimation Approach
Our procedure to estimate country-specific SDFsMI (1)
has two stages. The first stage uses a PCA to extract
important and identifiable risk factors in FX markets.
The second stage uses a cross-sectional regression of
mean carry trade returns on factor loadings (obtained
in the first stage) to reconstruct SDFs in FX markets.
In essence, PCA organizes exchange rate risks into
identifiable components. Because carry trade strategies
load on these risks, their expected returns shed light on
the pricing of these principal risks, which then help us
to estimate SDFs as the pricing kernels. By construc-
tion, our estimated SDF is the SDF projected onto the
FX market risk space.

2.2.1. First Stage: Identifying Principal FX Risk Factors.
To identify and organize the risk structure in FX mar-
kets, we apply a PCA on the exchange rate growths of
currency pairs, which share identical risks with carry
trade returns (2), (3). We briefly describe the main
analysis here and relegate technical details and nota-
tions to Section F in the online appendix.

Let 3 denote the set of P currency pairs in the
analysis, P ≡ dim (3), and X the matrix of innovations
in exchange rate growths (2). Specifically, each column
of matrix X denotes the demeaned exchange rate
growth time series of a currency pair in3 (see Section F
in the online appendix for a full exposition). The PCA
starts with the diagonalization of the exchange rate
sample covariance matrix XTX,

WT [XTX
]
W � Diag[λ1; . . . ;λP],

where λ’s are eigenvalues, and W is a P×P orthogonal
matrix whose elements are referred to as loadings in the
PCA. For convenience, we work with rescaled and
standardized quantities,

Δη ≡ ΔηWDiag
1̅̅̅̅
λ1

√ ; . . . ;
1̅̅̅̅
λP

√
[ ]

,

Π ≡ XWDiag
1̅̅̅̅
λ1

√ ; . . . ;
1̅̅̅̅
λP

√
[ ]

, Π
T
Π � 1P×P,

W ≡ WDiag[ ̅̅̅̅
λ1

√
; . . . ;

̅̅̅̅
λP

√ ], W
T
W � Diag[λ1; . . . ;λP],

(4)

where each of the P columns of matrix Δη denotes
a differential price-of-risk vector ΔηC/D, and each of the
P columns of matrix Π denotes a (rescaled) principal
component. When eigenvalues {λ1; . . . ;λP} are sorted
in descending order, the K-th column of matrix Π
represents the Kth observable (rescaled) principal
component (as a time series),

Πt,K � 1̅̅̅̅
λK

√ ∑
C/D∈3

Xt,C/DWC/D,K

� 1̅̅̅̅
λK

√ ∑
C/D∈3

WC/D,KΔη
T
C/DdZt � ΔηTKdZt, (5)

where the sum runs over all currency pairs C/D ∈3 in
the analysis, and K denotes any such pair.6 The last
equality has used (4), with ΔηK denoting the Kth
column of matrix Δη. Note that although we neither
observe differential prices of risks Δη (nor Δη) nor the
original diffusion dZt, the PCA in this first stage
identifies the observable loadings W, principal com-
ponents Π, and eigenvalues λ.

2.2.2. Second Stage: Cross-Sectional Regression. We
aim to construct an estimate M̂t,I of SDF Mt,I (1) by
projecting country I’s prices of risk in the space spanned
by the PCA rescaled prices of risks (4) as follows,

η̂I �
∑

C/D∈3
γI
C/DΔηC/D, (6)

where n× 1 (rescaled) differential price of risk vector
ΔηC/D is defined in (4), and η̂I is also a n× 1 column
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vector. Coefficients γ in the above projection are factor
prices (associated with [rescaled] principal factors
Πt,K, ∀K ∈3) and can be estimated via a cross-
sectional regression on carry trade returns as we ex-
plain next.

First, observe that as a result of the definitions in (4),
the element WB/L,K of matrix W is the loading of the
carry trade return CTI

t+dt,−B/+L (3) on the Kth (rescaled)
principal components Πt,K, ∀K ∈3.7 Second, under the
linear specification (6), expected carry trade returns (3)
become

1
dt
ECTI

−B/+L � ∑
C/D∈3

γI
C/DΔη

T
C/DΔηB/L

� ∑
C/D∈3

γI
C/DWB/L,C/D, ∀B

/
L ∈3, (7)

where in the last equality we have used rescaling and
orthogonality relationships (4). Combining the two
observations above indeed implies that the coefficient
γI
K in (6) is the factor price (in currency I) of the Kth

principal risk factor Πt,K, for each K ∈3.
Furthermore, because we observe the loadings W

and eigenvalues λ’s from PCA, Equation (7) suggests
that coefficients γ in (6) can be estimated from a cross-
sectional regression of the mean carry trade returns
(varying currency pairs B/L, while fixing denomina-
tion currency I) on the rescaled scores W (4). As
a result, we obtain the estimates (stacked in P× 1
column vector γ̂I),

γ̂
I � 1

dt
(WT

W)−1WT
ECTI . (8)

These coefficients then generate an estimate for country
I’s prices of risks (6), and in turn, for country I’s SDF,

dM̂t,I

M̂t,I
� −rIdt − η̂TI dZt � −rIdt −

∑
K∈3

Πt,Kγ̂
I
K, ∀I,

(9)

where the last equality is derived using (5). Clearly, γ̂I are
factor prices (in currency I) associated with principal
factors Πt,K. Furthermore, our estimated SDF is fully
identified because it is expressed in observable principal
components Π and estimated γ̂I determined in (8).

2.3. Discussion
Several important observations concerning the esti-
mation of SDFs from FX data are in order. First, all risks
in FX markets must be priced by at least one country’s
SDF. This is because an exchange rate equals the ratio of
the involved SDFs, hence any shock to an exchange rate
must be a shock to at least one SDF. This feature makes
FX markets a desirable setting to estimate SDFs as
opposed to other asset markets, parts of which are

idiosyncratic and not priced. Second, any residual risk
inherent in ηI but not priced in the carry trade returns
(3) must both (i) carry same prices in all currencies, and
(ii) be orthogonal to the risks revealed by exchange rate
fluctuations.8 Our estimated SDF from FX data do not
price these residual risks. It is an empirical question
as to how important these residual risks are, and we
address this question in subsequent sections on em-
pirical tests. Third, the PCA in the first stage organizes
FX risks in descending order of covariations. It there-
fore systematically informs us on selecting and retaining
only principal risks while dropping risks of minor
statistical significance. Such a selection is highly de-
sirable, for example, to eliminate portfolio strategies
of spuriously high Sharpe ratios (Ross 1976, Kozak
et al. 2015).
Finally, we observe that formally, our two-stage

estimate of the SDF may also be cast as a Fama and
MacBeth (1973) two-stage regression. Practically, how-
ever, our estimate differs from Fama–MacBeth regres-
sions in the implementation of the first stage. Therein, we
exploit the fact that all exchange rate risks are necessarily
priced by SDFs to implement the PCA directly on the
exchange rate covariance matrix (as opposed to run-
ning time-series regressions as in the Fama–MacBeth
first stage). To see this connection, we consider principal
components as risk factors and carry trades as test as-
sets. The Fama–MacBeth first stage is the (time-series)
regression of realized carry trade returns (3) on rescaled
principal components (4). For a specific strategy (of
borrowing B and lending L, from the perspective
of denomination currency I), this first-stage regression
is the following linear decomposition,

CTI
t+dt,−B/+L � ∑

K∈3
bIK,B/LΠt,K + εIt,B/L.

We can stack these regressions for all strategies B/L∈3,
from which the ordinary least squares (OLS) estimate
follows,

b̂
I � (ΠT

Π)−1ΠT
CTI � Π

T
X � W

T
, (10)

where the last equality follows from relationships (4).
Clearly, these Fama–MacBeth first-stage estimates are
the transpose of (rescaled) loadings from the PCA. The
Fama–MacBeth second stage is the (cross-sectional)
regression of the mean carry trade returns on the first-
stage factor estimates b̂. Then indeed the Fama–MacBeth
regression approach yields price of risk estimates
identical to those obtained from our second-stage re-
gression (7) (because the loadings (̂bI)T � W (10) in the
first stage are the same in the two approaches).

3. Estimation and Model-Implied Results
We apply the methodology introduced in the previous
section to the data to estimate the proposed diffusion
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model and country-specific SDFs in FX markets and
present in- and out-of-sample evidence to examine the
validity of our approach. We show that our estimated
SDFs are consistent with important empirical patterns
in the data.

3.1. FX Market Data
We use daily exchange rates between 11 developed
countries: Australia, Canada, Denmark, Eurozone,
Japan, New Zealand, Norway, Sweden, Switzerland,
the United Kingdom, and the United States. FXmarkets
in these developed currencies are typically more liquid,
feature a higher trading volume, lower transaction
costs, and less capital controls, and markets are more
likely to be fully integrated, frictionless, and free of
arbitrage in comparison with emerging countries.9

Because our theoretical model assumes fully in-
tegrated, frictionless, and arbitrage-free markets with
completely disentangled risks,10 our set of developed
countries fits our theoretical model better than a larger
set of developed and emerging countries.

Spot and forward exchange rates against the USD are
provided by Barclays Capital and WM/Reuters. In
cases in which data for one currency is available from
both sources, the longer series is used. We check the
discrepancies between the two sources, and they are
negligible. We use data from 1984 to 2014. Exchange
rates of all currencies except for the EUR are available
for the entire sample period. The inception of the EUR
was in 1999, when 15 developed countries in Europe
formed the Eurozone. Germany is one of the largest
economies in the Eurozone, and we use the German
mark to extend the data of the EUR from 1999 back to
1984. This helps us to keep our panel of data balanced.

Data for the U.S. short-term interest rate is from the
Center for Research in Security Prices (CRSP) U.S.
Treasury Databases, series “CRSP Monthly Treasury -
Fama Risk Free Rates.” This series contains one-month
risk-free rates. We use the midpoint between bid and
ask rates. We use the forward and spot exchange rates
to construct interest rate differentials of short-term
bonds between currencies (based on the covered in-
terest rate parity).

3.2. Principal Component Analysis
We use demeaned daily exchange rate growths of all
P � 55 bilateral exchange rates between our 11 cur-
rencies for the PCA. To determine the number of
common factors we use the Eigenvalue Ratio and
Growth Ratio estimators proposed by Ahn and
Horenstein (2013). They show that these two estima-
tors perform better in small samples and are more
robust than alternative estimators. The Eigenvalue
Ratio is defined as ER(k) � λk/λk+1, where λj is the
eigenvalue associated with the jth PCs. The Growth
Ratio is GR(k) � ln(1 + λk/V(k))/ln(1 + λk+1/V(k + 1))

withV ( j) � ∑P
i�j+1λi. The Eigenvalue Ratio and Growth

Ratio estimators choose k∗ER and k∗GR to maximize ER(k)
and GR(k); that is, k∗ER � argmax1≤k≤kmax{ER(k)} and
k∗GR � argmax1≤k≤kmax{GR(k)}, where kmax � P/10. We
find k∗ER � k∗GR � 2; that is, the Eigenvalue and Growth
Ratio estimators of Ahn and Horenstein (2013) both
suggest that the first two PCs capture the common
variation of the 55 bilateral exchange rates of our 11
currencies.11 Thefirst (rescaled) PCΠt,1 captures 33% and
the second Πt,2 21% of the total variation of all exchange
rate growths. In the following we construct country-
specific SDFs MJ as described in (9) based on only the
first two PCs Πt,1 and Πt,2.
Lustig et al. (2011) work with exchange rates quoted

against the USD, sort currencies according to interest
rates into quintiles, and construct five equally weighted
currency portfolios. From the return time series of these
five portfolios, they then construct PCs. They find that
the first two PCs explain almost all the variation in
returns of the five portfolios. Moreover, the first
component has a correlation of 99% with the Dollar
factor, which borrows USD and equally lends in
all other currencies. Similarly, the second PC has
a correlation of 94% with the Carry factor, which sells
the bottom and buys the top interest rate quintile
portfolios.
An important difference between Lustig et al. (2011)

and our analysis is the set of exchange rates (i.e., using
only exchange rates against the USD versus all bilateral
exchange rates). Of course, the set of exchange rates
quoted against the USD implies all bilateral exchange
rates. However, the PCA strongly focuses on USD-
specific shocks when only exchange rates quoted
against the USD are used, whereas the PCA on all
bilateral exchange rates puts more balanced weights on
shocks across all currencies and emphasizes shocks
common to multiple currencies. Intuitively, if every
country is exposed to independent and identically
distributed country-specific shocks, then the U.S.-
specific shock affects every exchange rate in the set
of exchange rates quoted against the USD, whereas
other country-specific shocks only affect one exchange
rate in that set. Thus, one of the first few PCs is likely to
load on the U.S.-specific shock even though it may not
necessarily be an important global risk or may not be
important from the perspective of investors outside the
United States. In contrast, using all bilateral exchange
rates reduces the emphasis on any country-specific
shock (including the United States). Thus, the use of
all bilateral exchange rates is better suited to capture
dominant global risks in international FX markets
without focusing on a particular investor or currency
denomination.
Lustig et al. (2011) use PCA on exchange rates quoted

against the USD and find that themarket price of risk of
the first PC (or also known as the Dollar factor) is small.
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The price of risk of the Dollar factor is also found to be
statistically insignificant in other studies (for instance
Menkhoff et al. 2012a or Maurer et al. 2017, among
many others). That is, although the first PC (or Dollar)
captures most of the time-series variation in exchange
rates (quoted against the USD), it does not explain the
cross-section of expected returns. Hence, this empirical
finding confirms our concern of using only exchange
rates quoted against one base currency in the PCA. In
contrast, we show below that the PCs that we con-
struct from all bilateral exchange rates all have sub-
stantial market prices and are thus important to both
capture the time-series variation in changes in exchange
rates and explain the cross-section of expected FX
returns.

Empirically, if we use only exchange rates quoted
against the USD in the PCA, we confirm the result of
Lustig et al. (2011) that the first two PCs contain the
same information as the Dollar and Carry factors. In
particular, the correlation between the first PC and the
Dollar is 99.6%, and the one between the second PC and
the Carry is 96.6%. Moreover, regressing the first
(second) PC on the Dollar and Carry factors yields an
R2 of 99.3% (93.5%). In contrast, we find that the re-
lation between the first two PCsΠt,1,Πt,2 and the Dollar
and Carry factors is weaker when we use all bilateral
exchange rates. Πt,1 has correlations of −30.3% and
88.9% with the Dollar and Carry. The regression R2

when regressing Πt,1 on the two factors is 88.1%. The
corresponding correlations for Πt,2 are −66.5% and
−40.4%, and the regression R2 is 60.8%. It is not sur-
prising that there is some overlap betweenΠt,1 andΠt,2
of all bilateral exchange rates and the first two PCs of
exchange rates defined against the USD (or the Dollar
and Carry factors), but clearly significant differences

remain. To conclude, we emphasize that these differ-
ences arise owing to the strong USD focus of the PCA
that only uses exchange rates quoted against the USD,
whereas the PCA that uses all bilateral exchange rates
attempts to focus less on country-specific and more
on global risks.
We also investigate and visualize the decomposition

of the first two PCs Πt,1 and Πt,2. By construction, each
PC loads on all 55 bilateral exchange rates. However,
any exchange rate J/I can be expressed in terms of the
two exchange rates J/USD and I/USD against the USD.
Thus, we can rewrite the original loadings of each PC
on the 55 bilateral exchange rates, as linear combina-
tions of only 10 exchange rates against the USD. These
loadings of Πt,1 and Πt,2 on the 10 exchange rates
J/USD are reported in the first two columns in Table 1
(first to second-to-last rows). In the last row (“United
States”) we report 1 minus the sum of all loadings on
the 10 exchange rates J/USD. Thus, the sum of the
entire column adds up to 1 and can be interpreted as
a portfolio of short-term bonds in the 11 countries.12

Column (6) in Table 1 provides information on the av-
erage interest rate in each country relative to the United
States. The discussion of all other columns is deferred
until later.
Πt,1 invests in AUD, New Zealand dollars (NZD),

USD, and Canadian dollars (CAD). The weights on
AUD and NZD are almost identical, 1.727 and 1.792,
and the investments in USD and CAD are slightly lower
with weights 1.428 and 0.876. It borrows in all other
currencies, predominantly in Swiss francs (CHF), EUR,
and Danish kroner (DKK) with weights −1.161, −0.884,
and −0.828, respectively. The exposure to JPY is some-
what lower with a weight of −0.682. In comparison,
Carry borrows equally in CHF and JPY (currencies with

Table 1. SDF Estimations and Country-Specific Characteristics

Country J

(1)
First PC Πt,1

loading on
currency J

(2)
Second PC Πt,2

loading on
currency J

(3)
Market
price

γ̂J
1 of Πt,1

(4)
Market
price

γ̂J
2 of Πt,2

(5)
Volatility
of SDF M̂t,J

(6)
Average interest
rate differential

J minus United States

(7)
Sharpe ratio of
borrowing USD
and lending J

Australia 1.727 −0.468 −0.087 0.307 0.319 0.030 0.041
Canada 0.876 0.598 −0.124 0.343 0.364 0.007 0.016
Denmark −0.828 −0.608 −0.196 0.302 0.360 0.008 0.038
Eurozone −0.884 −0.469 −0.198 0.307 0.365 −0.004 0.027
Japan −0.682 2.365 −0.190 0.402 0.445 −0.024 0.010
New Zealand 1.792 −0.525 −0.085 0.305 0.317 0.041 0.068
Norway −0.541 −0.984 −0.184 0.290 0.343 0.022 0.041
Sweden −0.460 −0.994 −0.180 0.289 0.341 0.016 0.032
Switzerland −1.161 −0.285 −0.210 0.313 0.377 −0.016 0.026
United Kingdom −0.266 −0.018 −0.172 0.322 0.365 0.019 0.036
United States 1.428 2.388 −0.143 0.369 0.396 N/A N/A

Notes. Columns (1) and (2): decomposition of first and second PC into linear combination of exchange rates J/USD; last row (United States)
reports 1 minus the sum of all weights in the above rows. Columns (3) and (4): estimated market prices of risk of first two PCs across countries
according to (8). Column (5): volatilities of estimated SDFs across countries according to (11). Column (6): time-series average of difference
between interest rates in country J and the United States. Column (7): Sharpe ratio of carry trade return of borrowing USD and lending in
currency J from the perspective of a U.S. investor. N/A, not applicable.
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lowest interest rates) and lends equally inAUDandNZD
(currencies with highest interest rates). Although there
is some overlap with Carry (i.e., CHF and JPY are still
funding and AUD and NZD are investment currencies),
the investments ofΠt,1 are clearly different. Particularly
interesting is thatΠt,1 assigns large negative weights to
EUR and DKK and a large positive weight to USD,
although their interest rates are almost identical. More-
over, the JPY does not have as important a role as a
funding currency as CHF, EUR, and DKK, but it is the
most important funding currency in Carry. The weights
of Πt,1 are very different from the Dollar factor, which
borrows 100% in USD and lends 10% in each of the other
10 currencies.

Πt,2 lends in JPY, USD, and CAD and borrows
predominantly in Norwegian kroner and Swedish
kroner. Interest rates are on average larger in Norway
and Sweden than in Japan, the United States, and
Canada. Thus, Πt,2 has some exposure to a long–short
strategy based on interest rate differentials, but the
relation to Carry is relatively weak. The weights ofΠt,2
also do not seem to align with the composition of the
Dollar factor.

To sum up, the first two PCsΠt,1 andΠt,2 constructed
from the set of all 55 bilateral exchange rates display
some overlap with the Carry (or the second PC of the 10
exchange rates quoted against the USD) and the Dollar
factor (or the first PC of the 10 exchange rates quoted
against the USD), but there are significant differences.
Most notably, the Dollar factor is less prevalent in our
analysis than in Lustig et al. (2011) because by con-
struction country-specific risks in our PCA on all bi-
lateral exchange rates get less attention, and the focus is
directed toward global risks (i.e., independent of a base
currency) comparedwith an analysis based on exchange
rates only quoted against the USD. In the following we
provide additional estimation results and tests to dem-
onstrate that our risk factors are distinct from Dollar
and Carry in several other important dimensions.

3.3. Estimation of Country-Specific SDFs
Given the first two PCs Πt,1 and Πt,2 as new risk
sources,we use the regression proposed in Equation (7) to
estimate the corresponding market prices of risk γ̂ J

1 and
γ̂ J
2 specified in (8) and construct country J’s SDF M̂t,J

according to (9).
Columns (3) and (4) in Table 1 showmarket prices of

risk (or risk loadings of SDFs) γ̂ J
1 and γ̂ J

2 on the first
two PCs Πt,1 and Πt,2 according to (8). Column (5) re-
ports the estimated annual volatilities of country-
specific SDFs,

Vol
dM̂t,J

M̂t,J

( )
� ‖γ̂ J‖ �

̅̅̅̅̅̅̅̅
γ̂JT γ̂

J
√

. (11)

Columns (6) and (7) further report for each country J the
average annual interest rate differential between coun-
try J and theUnited States and the annual Sharpe ratio of
the bilateral carry trade of borrowing USD and lending
currency J.
The risk loadings in columns (3) and (4) do not differ

a lot across countries, which is consistent with the
strong cross-country correlation of SDFs. For every
country γ̂ J

1 is between −0.21 and −0.085, and γ̂ J
2 is

between 0.289 and 0.402. Negative (positive) market
prices γ̂ J

1 (γ̂ J
2) imply that Πt,1 (Πt,2) is positively

(negatively) related to the SDF growth dM̂t,J/M̂t,J and
a positive realization in Πt,1 (Πt,2) is bad (good) news
for marginal investors (see Equation (9)). Market
prices γ̂ J

2 for the second PC Πt,2 are larger in magni-
tude than γ̂ J

1 for the first PC Πt,1, which is interesting
because Πt,2 is less correlated to the Carry factor
(correlation of −40%) than Πt,1 (correlation of 88.9%).
Thus, our estimation suggests that the Carry fac-
tor may not capture the most important priced
risks in FX markets. This is an important contribu-
tion because identifying and quantifying the domi-
nant priced risk sources is the first step to understand
FX markets. To emphasize the importance of the
first two PCs in our analysis we demonstrate in the
tests in Section 4 that they are also essential risk
sources in the context of equity markets and are re-
lated to financial stress indicators and macroeconomic
fundamentals.
The variation in SDF volatilities across countries is

economically large: SDF volatilities range from 31.7%
and 31.9% in Australia and New Zealand to 40.2% in
Japan. Moreover, the cross-country variation in SDF
volatilities is strongly associated with average interest

Figure 1. (Color online) Cross-Sectional Relationship
Between (Time-Series Average of) Interest Rates and
Volatilities of Country-Specific SDFs as Defined in
Equation (11)
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rates. Figure 1 plots average interest rate differentials in
column (6) in Table 1 against SDF volatilities in column (5)
and documents a striking negative relationship with a
correlation of −89%. Column (1) in Table 2 provides
statistical properties and confirms that the nega-
tive relationship is highly statistically significant
with a t-statistic of 6.10 (panel A) or 2.05 after con-
trolling for inflation (panel B). A common economic
intuition is that volatility in the SDF is positively
associated with precautionary savings. On the basis
of this perception a large (small) SDF volatility in-
deed implies much (little) precautionary savings and
a relatively low (high) interest rate in equilibrium.
However, such an argument requires additional as-
sumptions on preferences and the risk sources in the
economy than what we are assuming in the pres-
ent paper.

Our finding differs from those of Gavazzoni et al.
(2013), who show in an affine diffusion model that
interest rates and market prices of risk are positively

associated. In particular, they show that under certain
parametric assumptions the volatility of the SDF is
proportional to the volatility of the interest rate. They
further document empirically that high interest rates
tend to be more volatile, and therefore, are associated
with more volatile SDFs under their modeling assump-
tions. In contrast, our estimates imply a negative relation
between interest rates and SDF volatilities. The dif-
ference arises because our estimation is nonparametric
and does not make any assumptions (such as an affine
structure) on the relationship between interest rates and
market prices of risks.13

We further investigate the relationship between the
SDF volatility in country J and carry trade returns of
borrowing USD and lending currency J, CTUS

t+dt,−US/+J .
Expected carry trade returns ECTUS

−US/+J (i.e., the time-
series average of CTUS

t+dt,−US/+J) vary substantially across
countries J, whereas the variances of CTUS

t+dt,−US/+J hardly
change, as illustrated in Figure 2. Given this empirical
pattern we can show in the context of a diffusion model

Table 2. Cross-Sectional Regressions on SDF Volatilities and Interest Rate Differentials

(1)
Average interest

rate differential rJ − rUS

(2)
Average CT −US/+J

to U.S. investor

(3)
Sharpe ratio
CT −US/+J to
U.S. investor

(4)
Average

CT −US/+J
to U.S. investor

(5)
Sharpe ratio
CT −U.S./+J
to U.S. investor

Panel A

Vol dM̂t,J

M̂t,J

( )
−0.48∗∗∗ −0.40∗∗∗ −3.31∗∗∗ — —
(−6.10) (−4.14) (−4.21) — —

rJ − rUS — — — 0.72∗∗∗ 5.95∗∗∗
— — — (3.91) (3.93)

R2 79% 63% 64% 61% 61%

Panel B

Vol dM̂t,J

M̂t,J

( )
−0.20∗ −0.55∗∗∗ −4.59∗∗∗ — —
(−2.05) (−3.33) (−3.41) — —

rJ − rUS — — — 1.77∗∗∗ 14.47∗∗∗
— — — (5.09) (5.06)

iJ − iUS 1.39∗∗∗ −0.76 −6.37 −2.51∗∗∗ −20.52∗∗∗
(3.44) (−1.11) (−1.14) (−3.24) (−3.21)

R2 90% 67% 68% 81% 81%

Panel C

Vol dM̂t,J

M̂t,J

( )
— −0.29∗∗ −2.42∗∗ — —
— (−2.34) (−2.44) — —

rJ − rUS — 1.34∗∗∗ 10.89∗∗∗ — —
— (4.04) (4.03) — —

iJ − iUS — −2.62∗∗∗ −21.45∗∗∗ — —
— (−4.19) (−4.22) — —

R2 — 88% 88% — —

Notes. Cross-country OLS regressions YJ � α +∑
βhXh + εJ with explanatory variables X: estimated SDF volatility Vol(dM̂t,J/M̂t,J) in country J

(11), average interest rate differential rJ − rUS, average inflation differential iJ − iUS. Dependent variable Y: average interest rate differential
rJ − rUS (column (1)), average carry trade return CTUS

−US/+J (columns (2) and (4)), Sharpe ratio of CTUS
−US/+J (columns (3) and (5)). Panels A and B are

separate regression results. Values in parentheses below each regression coefficient are t-statistics. We have 11 observations.
*10%, **5%, and ***1% significance levels of two-sided t-statistics.

Maurer, Tô, and Tran: Pricing Risks Across Currency Denominations
5316 Management Science, 2019, vol. 65, no. 11, pp. 5308–5336, © 2019 INFORMS



that there must be a strong relationship between the
expected carry trade return ECTUS

−US/+J and the volatility
of country J’s SDF. Indeed,

‖γ̂ J‖2 � ⃦⃦
γ̂US

⃦⃦2 − 2(γ̂US − γ̂ J)Tγ̂US + ⃦⃦
γ̂US − γ̂

J ⃦⃦2
� ⃦⃦

γ̂US⃦⃦2 − 2
dt
ECTUS

−US/+J +
1
dt
Var[CTUS

t+dt,−US/+J].

It is apparent from Figure 2 that the cross-country
variation of Var[CTUS

t+dt,−US/+I] is almost zero. We get the
approximate empirical relationship,

‖γ̂ I‖2 − ‖γ̂ J‖2 ≈ 2
dt
[ECTUS

−US/+J − ECTUS
−US/+I]

� 2
dt
ECTUS

−I/+J . (12)

Although relationship (12) seems similar to equation
(4) in Verdelhan (2010),14 there are some key differences.

Verdelhan (2010) derives his equation (4) for the ex-
pected log-return instead of the expected (continuously
compounded) return an investor earns. Although co-
variations between SDFs across countries are not the
focus in his analysis, they are a conceptually important
piece when modeling risks in FX markets. A version of
Verdelhan (2010)’s equation (4) can be recovered if we
assume that SDFs across countries feature a correlation
close to 1, which is indeed what we estimate, as we
will show in the next section (Figure 4).

The left plot in Figure 3 shows that our estimated
model matches the relationship in Equation (12) very
well. The cross-country correlation between ECTUS

−US/+J
and the SDF volatility in country J is −79%. Column (2)
in panel A in Table 2 shows that the relationship is
highly statistically significant with a t-statistic of 4.14.
The relationship is robust to controlling for inflation
(t-statistic of 3.33; column (2) in panel B) and for inflation

Figure 2. (Color online) Carry Trade Strategies of Borrowing USD and Lending Currency J from the Perspective of a
U.S. Investor

Notes. Left vertical axis, crosses indicate the cross-sectional variation in 2× average carry trade returns. Right vertical axis, circles indicate
cross-sectional variation in the variance of carry trade returns.

Figure 3. (Color online) Carry Trade Premia vs. SDF Volatilites and Interest Rates

Notes. (Left) Cross-country relationship between estimated SDF volatility in country J and average carry trade return of borrowing USD and
lending currency J earned by U.S. investor. (Right) Cross-country relationship between average interest rate differential between country J and
the United States and average carry trade return of borrowing USD and lending in currency J earned by an investor in country J.
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and interest rates (t-statistic of 2.34; column (2) in panel C).
Indeed, regression (7) in our estimation approach by
construction implies this strong relationship, provided
that the model matches exchange rate volatilities and
average carry trade returns in the data. Thus, the strong
empirical relationship in Figure 3 can be viewed as
a check of the goodness of the fit and the suitability
of our estimation approach. Because the variance of
CTUS

t+dt,−US/+J is basically constant across countries J,
we also find the same relationship between the
Sharpe ratio of the carry trade CTUS

t+dt,−US/+J and the SDF
volatility in country J (column (3) in panels A, B, and
C in Table 2).

The plot on the right in Figure 3 and columns (4) and
(5) (panels A and B) in Table 2 show the well-known
strong positive relationship between expected carry
trade returns ECTUS

−US/+J and Sharpe ratio and the average
interest rate differential between country J and the United
States. The relationship between carry trade returns
and interest rates is similarly strong as the relationship
between the carry trade returns and the estimated SDF
volatilities. Both relationships are highly statistically
significant, and the cross-sectional regression fit ismore
than 60% in all specifications. Finally, columns (2) and
(3) in panel C of Table 2 suggest that the SDF volatility,
interest rate, and inflation all add information to ex-
plain the cross-section of expected carry trade returns
and Sharpe ratio (i.e., the slope coefficients on all three
variables are significant).

4. Out-of-Sample Results
In the following we investigate the time series of
our estimated SDFs M̂t,J (Section 4.1), decompose
them into permanent and transitory components,
and check the out-of-sample validity of our estimates
using stock and long-term bond prices (Section 4.2).

We further study the importance of the identified risks
(Πt,1 and Πt,2) and SDFs M̂t,J to price the cross-section
of international stock returns (Section 4.3) and the
relationship to financial stress indicators and mac-
roeconomic fundamentals (Section 4.4). Because all
these tests use data that were not used as inputs in the
estimation of our FX risks and SDFs, these tests are
out-of-sample.

4.1. Times-Series of SDFs
Figure 4 plots the time series of the natural logarithm
of all 11 country-specific SDFs, ln(M̂t,J).15 In our model,
ln(M̂t,J) follows a random walk with drift, where the
permanent shocks are given by the changes in the
n-dimensional Brownian motion dZt multiplied by
the negative of themarket price of risk vector ηJ and the
drift is equal to the negative of the interest rate rJdt.
Empirically, augmented Dickey–Fuller tests suggest
that the log SDF (levels) ln(M̂t,J) are integrated of order 1,
which is consistent with the model setup. That is,
across all 11 countries the augmented Dickey–Fuller
test statistics for ln(M̂t,J) are always larger than −2.543
(p-values are above 32%), suggesting that we cannot
reject the null hypothesis that ln(M̂t,J) is nonstationary.
Moreover, the same test statistics for the SDF growths
dM̂t,J/M̂t,J ≈ ln(M̂t+dt,J) − ln(M̂t,J) are highly statistically
significant and always below −86.398 (p-values are be-
low 0.1%), suggesting that we reject the null hypoth-
esis that SDF growths are nonstationary.16

There is a strong comovement between the SDFs
across all countries. We estimate correlations of daily
growths of the SDFs between any country pair I and J,
Corr (dM̂t,I/M̂t,I, dM̂t,J/M̂t,J) in our sample and find that
all estimates are above 95%. An almost perfect corre-
lation implies that the market prices of risk vectors are

Figure 4. (Color online) Time Series of Country-Specific log SDFs, ln(M̂t,J) of 11 Developed Countries Estimated According to
Equation (9)
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very similar across countries. However, in our model
shocks (changes in Brownian motion dZt) have a per-
manent effect on SDFs, and as long as market prices
of risk vectors are not exactly identical, SDFs are not
cointegrated (i.e., any linear combination of two SDFs
is nonstationary). Empirically, we test for a cointe-
gration relationship between ln(M̂t,J) in country J and
ln(M̂t,US) in the United States. Therefore, we regress
ln(M̂t,J) on a constant and ln(M̂t,US) and investigate
whether the regression errors have a unit root (Engle and
Granger 1987). Augmented Dickey–Fuller tests reveal
that for 6 of 10 regressions the null hypothesis that the
errors are nonstationary cannot be rejected at the 10%
level (test statistics larger than −2.704); that is, we cannot
reject the hypothesis that these SDFs are not cointe-
grated with the SDF in the United States. In contrast, for
Australia, Eurozone, New Zealand, and Switzerland we
find significant Dickey–Fuller statistics (at the 1% level),
suggesting that these SDFs are cointegrated with the
SDF in the United States.

In summary, consistent with the theoretical diffusion
model the estimated SDFs are integrated of order one
(i.e., SDF growths are stationary). For the question of
whether the SDFs are cointegrated, the empirical evi-
dence is mixed. Our theoretical model assumes that
SDFs are not cointegrated, but if market prices of risk
vectors across countries are similar (i.e., SDF growth is
highly correlated across countries), then it is difficult to
distinguish a model with versus without a cointegration
relationship.

The observation of highly correlated SDFs is consistent
with the finding of Brandt et al. (2006), who conclude
that because the exchange rate is equal to the ratio of
(projected) country-specific SDFs17 the correlation be-
tween the (projected) SDFs has to be close to 1 tomatch the
smooth exchange rate process in the data. Remember that
because we estimate SDFs from FX market returns, our
constructed SDFs are always in the space spanned by asset
returns (i.e., they are SDFs projected onto the FX market
risk space).

The five largest quarterly increases in the estimated
SDFs across the world are in the last quarter of 1998,
third and fourth quarter of 2008, second quarter of
2010, and third quarter of 2011. The large increase in
SDFs in the last quarter of 1998 is subsequent to the
Asian financial crisis in the second half of 1997 and
the Russian sovereign default and the bailout of
Long-Term Capital Management in 1998. The surge in
the SDFs in the second half of 2008 coincides with the
collapse of Lehman Brothers and the concurrent tur-
moil in financial markets. The increases in 2010 and
2011 can be explained by the first two bailouts of
Greece during the European sovereign debt crisis. The
time series of SDFs further shows a substantial and
steady increase in the late 1990s and early 2000s, which
relates to the burst of the of the dot-com bubble in the

early 2000s. Although we do not have a formal test
to analyze these events and the time-series pattern,
we interpret it as first suggestive evidence in favor of
our estimates.

4.2. Decomposition of SDFs into Permanent and
Transitory Components

Alvarez and Jermann (2005) andHansen and Scheinkman
(2009) show how a SDF M̂t,J can be decomposed into
a permanent (martingale) component M̂P

t,J and a transitory
component M̂T

t,J , M̂t,J � M̂P
t,JM̂

T
t,J . We decompose our

estimated SDFs into permanent and transitory compo-
nents following Christensen (2017), who proposes a
nonparametric approach to solve the Perron-Frobenius
eigenfunction problem in Hansen and Scheinkman
(2009) given a time series of state variables and the SDF.
We use the two PCs Πt,1 and Πt,2, which are proxies for
changes in Brownian motion dZt in our model, as state
variables in our decomposition. Details of the decom-
position procedure are provided in Section D in the
online appendix. An alternative approach to decompose
the SDF is to use the fact that the transitory component is
equal to the return of a bond with infinite maturity (for
instance, Sandulescu et al. 2017 choose this approach).
An advantage of using the nonparametric approach of
Christensen (2017) is that we can use out-of-sample tests
using stock and bond return data to validate our estimated
SDFs and permanent and transitory components because
these estimations are based on only FX market data.

4.2.1. Volatility Bound Tests. In our theoretical model
changes in the diffusion dZt are always permanent
shocks to the SDF. However, in the data our estimated
SDFs may still feature some transitory changes due to
the time variation in the interest rate (drift of the SDF) or
due to an autocorrelation in our constructed PCs Πt,1
and Πt,2. We find that the standard deviation of the
permanent component dM̂P

t,J/M̂
P
t,J is roughly seven times

larger than the standard deviation of the transitory
component dM̂T

t,J/M̂
T
t,J across all countries J. The an-

nualized standard deviation of the estimated per-
manent component dM̂P

t,J/M̂
P
t,J ranges between 32%

(New Zealand) and 45% (Japan) across countries,
with an average of 37%. In contrast, the annualized
standard deviation of the transitory component
dM̂T

t,J/M̂
T
t,J ranges between 4.4% (New Zealand) and

6.2% (Japan) across countries, with an average of 5.1%.
Wefind a slightly negative correlation betweenpermanent
and transitory components. The correlation coefficient
ranges between −0.23 and −0.21, with an average of −0.22.
Alvarez and Jermann (2005) derive bounds (from

observable stock and long-term bond returns) on the
variation of the two components and show that
the permanent component is very volatile, whereas
the transitory component is much less important.
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In particular, they construct the following three
bounds:

Lt
MP

t+dt,J
MP

t,J

( )
≥ Et [ln(Rt+dt,J)] − Et [ln(Rt+dt,∞,J)] (13)

L
MP

t+dt,J
MP

t,J

( )
L

Mt+dt,J
Mt,J

( ) ≥ min 1,
E ln

Rt+dt,J
1+rt,J

( )[ ]
− E ln

Rt+dt,∞,J

1+rt,J
( )[ ]

E ln
Rt+dt,J
1+rt,J

( )[ ]
+ L

1
1+rt,J
( )⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(14)

L
MT

t+dt,J
MT

t,J

( )
L

Mt+dt,J
Mt,J

( ) ≤
L

1
Rt+dt,∞,J

( )
E ln

Rt+dt,J
1+rt,J

( )[ ]
+ L

1
1+rt,J
( ), (15)

where Rt+dt,J is the [t, t + dt] holding period gross return
of the stock market index in country J, Rt+dt,∞,J is the
[t, t + dt] holding period gross return of the (default
free) long-term bondwith infinitematurity in country J,
rt,J is the risk-free short rate (rate of return) at time t in
country J, and Lt(x) � ln (Et[x]) − Et[ln (x)] is the entropy
of random variable x.18

We compute bounds (13), (14), and (15) using stock
and bond data for all 11 countries in our analysis and
check whether they hold for our estimated SDFs M̂t,J

and permanent and transitory components M̂P
t,J and

M̂T
t,J .

19 Remember that our estimates only use spot and

forward exchange rate data and the time series of the
U.S. short-term interest rate. Thus, the bound tests
(using stock and long-term bond data) are out-of-sample
tests. We use monthly data from 1984–2014 (to match
our FX data) of the MSCI total return indices to proxy
stock market returns Rt+dt,J . We follow Lustig et al.
(2017) and approximate the long-term bond returns
Rt+dt,∞,J (with infinite maturity) using the total return
indices of 10-year government bonds provided by
Global Financial Data. They show that this approxi-
mation is reasonable in the context of popular affine
term structure models. All returns are denominated in
local currency. Details about the data are provided in
Section 5 in the online appendix.
Table 3 reports the results. The odd columns provide

estimates of the entropies on the left hand side of the
conditions (13), (14), and (15), whereas the even col-
umns report the lower and upper bounds estimated
from stock and bond returns. The first lower bound (13)
on the entropy of the estimated permanent compo-
nent Lt(M̂P

t+dt,J/M̂
P
t,J) holds in all countries except for

Switzerland, which seems to be due to the exceptionally
large average excess return of the Swiss stock market
index between 1984 and 2014 and may be attributed to
noise in the estimation of the expected return. The
second lower bound (14) on the entropy of the esti-
mated permanent component relative to the entropy of
the SDF (L(M̂P

t+dt,J/M̂
P
t,J))/(L(M̂t+dt,J/M̂t,J)) holds in all 11

countries. The entropy of the permanent component is
always larger than the entropy of the SDF, which is
consistent with the fact that the permanent and tran-
sitory components are negatively correlated. Finally,

Table 3. SDF Volatility Bound Tests

Bound (13) Bound (14) Bound (15)

Country

(1)

Lt
M̂P

t+dt,J
M̂P

t,J

( )
(2)

Lower bound

(3)

L
M̂P

t+dt,J
M̂P

t,J

( )
L

M̂t+dt,J
M̂t,J

( )
(4)

Lower bound

(5)

L
M̂P

t+dt,J
M̂

P
t,J

( )
L

M̂t+dt,J
M̂t,J

( )
(6)

Upper bound

Australia 0.0535 0.0058 1.0469 0.0815 0.0204 0.0446
Canada 0.0698 0.0128 1.0460 0.2020 0.0207 0.0368
Denmark 0.0681 0.0232 1.0425 0.2468 0.0210 0.0243
Eurozone 0.0701 0.0086 1.0427 0.1107 0.0210 0.0166
Japan 0.1041 0.0492 1.0458 0.4654 0.0211 0.0276
New Zealand 0.0527 −0.0069 1.0471 −0.1686 0.0205 0.0664
Norway 0.0617 −0.0131 1.0421 −0.4859 0.0211 0.0737
Sweden 0.0610 0.0230 1.0423 0.2681 0.0211 0.0193
Switzerland 0.0747 0.0955 1.0429 0.6401 0.0211 0.0038
United Kingdom 0.0700 0.0169 1.0434 0.2739 0.0210 0.0450
United States 0.0825 0.0393 1.0461 0.4558 0.0209 0.0379

Notes. The table reports the entropies of the estimated SDFs and their permanent and transitory components, as well as the lower and upper
bounds of Alvarez and Jermann (2005) estimated from stock and bond return data for all 11 countries in our analysis. Columns (1) and (2) report
values for the bound in (13), (3) and (4) the values for the bound in (14), and (5) and (6) the values for the bound in (15). All reported quantities are
annualized.
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the upper bound (15) on the entropy of the transi-
tory component relative to the entropy of the SDF
(L(M̂T

t+dt,J/M̂
T
t,J))/(L(M̂t+dt,J/M̂t,J)) holds for 8 of our 11

countries but is violated in case of Europe, Sweden,
and Switzerland.

4.2.2. Long-Term Bond Yields. In the SDF decompo-
sition we obtain an estimate of the eigenvalue ρ in the
Perron-Frobenius eigenfunction problem. −ln(ρ) may
be interpreted as the yield on a long-term bond with
infinite maturity (Christensen 2017). We use these
implied yields from our decomposition of the SDFs and
compare them with the average yields (in local cur-
rency) of the 10-year government bonds across all
countries. The 10-year bond yield data are again from
Global Financial Data. Because our SDFs are estimated
from FX market data and do not use any information
about long-term bonds, our comparison is an out-of-
sample validation of our SDF estimation.

Figure 5 shows a striking positive cross-country re-
lationship with a correlation of 91% between the average
(annualized) 10-year bond yields and the (annualized)
yields extracted from our estimated SDFs. The slope in
a regression of the data on the implied yields is 0.74,
which is statistically different from 0 with a t-statistic
of 9.35.20 The R2 of the regression is 91%, suggesting
that the SDFs estimated from FXmarket data are able to
explain a large fraction of the cross-country variation in
long-term bond yields. This is strong out-of-sample
evidence in favor of our estimated SDFs.

Lustig et al. (2017) derive an identity (proposition 1 in
their paper) between long-term bond excess returns
across different countries (denominated in USD)
and entropies of the permanent components of these
countries’ SDFs,

Et[rxUS
t+dt,∞,J] � Et[rxt+dt,∞,US] + Lt

MP
t+dt,US

MP
t,US

( )

− Lt
MP

t+dt,J
MP

t,J

( )
,

(16)

with rxUS
t+dt,∞,J� ln (Rt+dt,∞,J/1+rt,J) + ln (CTUS

t+dt,−US/+J)
and rxt+dt,∞,US� ln(Rt+dt,∞,US/1+rt,US). The left-hand side
(LHS) is the expected log excess return of the long-term
bond (with infinite maturity) in country J denominated
inUSD.21 The right-hand side (RHS) is the the expected
log excess return of the long-term bond in the United
States (denominated in USD) plus the difference in the
entropies of the permanent components of the SDFs in
the United States versus country J.

4.2.3. Long-Term Bond Excess Returns and Perma-
nent Components in SDFs. Lustig et al. (2017) do
not have estimates of the entropies of the permanent
SDF components and thus cannot directly test their

theoretical relationship (16). Instead they use it as
a bound on how much entropies of the permanent
SDF components may differ across countries and
investigate which models in the literature satisfy
this bound.
In contrast, we have estimates of the entropies of the

permanent components across countries and can test
the relationship directly.We use again the 10-year bond
return data from Global Financial Data and the per-
manent components from the decomposition of our
estimated SDFs. We directly test relationship (16) using
the cross-sectional regression,

E[rxUS
t+dt,10,J] � a + b

[
Et[rxt+dt,10,US] + Lt

M̂P
t+dt,US

M̂P
t,US

( )

− Lt
M̂P

t+dt,J
M̂P

t,J

( )]
+ εJ , (17)

where the excess returns of the 10-year government
bonds rxUS

t+dt,10,J and rxt+dt,10,US are again approximations
of the excess returns of the long-term bonds with
infinite maturity (as discussed earlier). If (16) holds,
then we should find constant a � 0 and slope b � 1.22

Figure 6 visualizes regression (17) and shows a striking
positive relationship between the RHS and LHS of
Equation (16). We estimate the constant term a equal
to 0.019 and not statistically significantly different
from 0 (t-statistic of 1.39). The slope coefficient b
is equal to 0.97, statistically significantly different
from 0 (t-statistic of 3.38) but not different from 1
(t-statistic of 0.12). Thus, we conclude that the theoretical
equation (16) of Lustig et al. (2017) holds for the
permanent components extracted from our estimated
SDFs. This is strong out-of-sample evidence in favor
of our estimation.

Figure 5. (Color online) Average 10-Year Bond Yields vs.
Implied Yields

Notes. Plot of average 10-year government bond yields (in local
currency) against implied yields −ln(ρ) (in local currency) obtained
from the SDF decomposition of Christensen (2017) (crosses). The
diagonal line in the figure is the regression fit when regressing (20).
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4.3. International Stock Returns
In our first set of tests we take market prices of PC
risks γ̂ J

1 and γ̂ J
2 estimated from the FX data as given

and estimate implied equity premia from covariations
between stock returns and PCs Πt,1 and Πt,2. In the
second set of tests we use Fama and MacBeth (1973)
regressions to estimate market prices of PC risk from
international stock returns.

4.3.1. Pricing Stocks Using Market Prices of PC Risks
Estimated from FX Data. We use again the monthly
MSCI stock market return indices denominated in
local currency (as in Section 4.2). We assume that
country J’s stock market excess return denominated
in its local currency J is described by a diffusion
process,

Rt+dt,J � (µJ − rJ)dt + σTJ dZt, (18)

where Rt+dt,J is the realized stock market excess return of
country J in local currency, µJ − rJ is the equity premium,
and σJ is the exposure to Brownian motion risk sources
dZt. We estimate stock market J’s exposures σ1,J and σ2,J
to FX market risks Πt,1 and Πt,2 using the time-series
regression,

Rt+dt,J � αJ +
∑2
k�1

σk,JΠt,k + εt,J , (19)

where αJ equals the average stock excess return and εt,J
captures all the risk not spanned by Πt,1 and Πt,2.

The implied annualized expected excess return on J’s
stock market (i.e., implied equity premium) measured
in its home currency J is

ERJ � µJ − rJ � − 1
dt
Covt

dM̂J,t

M̂t,J
,Rt+dt,J

( )
� ∑2

k�1
γ̂ J
kσk,J .

(20)

Thus, we estimate the implied ERJ using the market
prices γ̂ J

1 and γ̂ J
2 estimated in FX markets (8) and the

stock market loadings σ1,J and σ1,J on Πt,1 and Πt,2
obtained from the time-series regression (19). Hence,
(20) presents an expression for the equity premium
implied by our estimated SDFs M̂t,J in FX markets.
Column (3) in panel A in Table 4 reports these esti-
mates. Column (4) reports the percentage of the vari-
ance of Rt+dt,J explained by the first two PCs Πt,1 and
Πt,2 in the time-series regression (19), and columns (1)
and (2) report averages and volatilities of stock market
excess returns in the data.
Stock markets across all countries negatively covary

with the SDFs, and the FX market-implied equity
premia ERJ are positive. The implied premia have on
average a magnitude of 30% of the average realized
excess returns. This is a substantial amount considering
that the FX market risks Πt,1 and Πt,2 capture only
slightly more than 10% of the total stock market return
variation in the time series. Moreover, the correlation
between the cross-country variation in implied premia
ERJ and the average of realized excess returns Rt+dt,J
is 67%. Figure 7 illustrates the strong positive cross-
country relationship. Regressing average realized ex-
cess returns Rt+dt,J on the implied premia ERJ yields
a statistically significant regression coefficient of 3.35,
with a t-statistic of 2.89. We conclude that although FX
market risks Πt,1 and Πt,2 only capture a small part of
the time-series variation in stock returns, they are able
to explain a substantial amount of priced stock market
risks (i.e., a substantial part of international equity
premia). These estimates lend support to the validity
of our construction of country-specific SDFs from FX
market returns and demonstrate that FX market risks
are important for pricing stocks.
To investigate the importance of the individual PCs,

panel B in Table 4 decomposes the SDFs, and columns
(1) and (2) report the implied premia stock market J
earns due to exposure to Πt,1 and Πt,2 (i.e., γ̂ J

1σ1,J and
γ̂ J
2σ2,J). Columns (3) and (4) report the percentage of

stock market return variance captured by Πt,1 and Πt,2.
All stockmarkets load negatively onΠt,1 and positively
on Πt,2. Remember that the market price γ̂ J

1 (γ̂
J
2) of Πt,1

(Πt,2) is negative (positive), and thus an increase (de-
crease) in Πt,1 (Πt,2) is bad news to the marginal in-
vestor. Hence, stocks are risky and earn a positive
premium for an exposure to the two PCs. Though we

Figure 6. (Color online) Long-Term Bond Excess Returns
and Permanent Components in SDFs

Note. Plot of LHS � E[rxUS
t+dt,10,J] against RHS � Et[rxt+dt,10,US] +

Lt(M̂P
t+dt,US/M̂

P
t,US) − Lt(M̂P

t+dt,J/M̂
P
t,J) (crosses) and fitted regression

line LHS � a + b ∗ RHS + εJ (black line), whereE[rxUSt+dt,10,J] is the average
excess return of the 10-year bond in country J denominated in USD,
E[rxt+dt,10,USD] is the average excess return of the 10-year bond in the
United States, and Lt(M̂P

t+dt,J/M̂
P
t,J) is the entropy of the estimated

permanent component of the SDF in country J.
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find thatΠt,1 generally explains more of the time-series
variation in stock returns than Πt,2, the premia paid
owing to risk exposure is slightly larger for Πt,2. This is
because the market price of risk γ̂J

2 is estimated to be
substantially larger than γ̂ J

1 in the FXmarket data (Table 1).
Next, we repeat the above analysis (i.e., estimation of

(19) and (20)) for the United States only and investigate
how our results are affected by changes in the data
frequency from monthly to 1-, 5-, 10-, 20-, 60-, and 125-
trading-day holding periods.23 We use the daily value-
weighted-index from CRSP. Table 5 reports for the
diverse holding periods the implied U.S. equity pre-
mium (column (1)), the premia earned owing to expo-
sure toΠt,1 andΠt,2 (columns (2) and (3)), the percentage
of U.S. stock market return variance explained by the
U.S. SDF M̂t,US (column (4)), and the percentage of stock
return variance captured by Πt,1 and Πt,2 (columns (5)
and (6)). The percentage of stock return variance explained

by our estimated SDF is only 4.9% at the daily frequency,
roughly 10% at 5-, 10-, and 20-trading-day frequencies,
and increases to slightly more than 15% at 60- and 125-
trading-day frequencies. Πt,1 explains slightly more of
the time-series variation than Πt,2, and the difference
increases at longer horizons. Except for the daily fre-
quency, the implied premia are quite stable across the
diverse data frequencies. The implied (annualized)
premiumby the overall SDF is 1.6% at the daily frequency
and 2.3%–2.4% for frequencies between 5 and 125 trading
days, which is approximately 30% of the average realized
stock market excess return in the United States. The
premium earned owing to risk exposure to Πt,1 is
slightly less than 1% and approximately 1.5% forΠt,2.
Thus, Πt,1 is slightly more important to explain the
time series of returns, but Πt,2 is more important to
price the U.S. stock market. Overall, the data fre-
quency does not seem tomatter much as long as we use

Table 4. Country-Specific Stock Markets and SDFs

Panel A: Stock market returns in country J and MJ

Country

(1)
Average stock
excess return

(2)
Volatility of
excess return

(3)
Implied equity
premium ERJ

(4)
Percentage of

variance explained

Australia 0.062 0.177 0.014 8.5
Canada 0.062 0.164 0.019 12.3
Denmark 0.090 0.201 0.027 17.1
Eurozone 0.073 0.219 0.027 11.5
Japan 0.103 0.245 0.030 7.3
New Zealand 0.037 0.200 0.017 14.1
Norway 0.026 0.185 0.015 5.8
Sweden 0.078 0.251 0.031 14.6
Switzerland 0.144 0.247 0.026 9.5
United Kingdom 0.059 0.185 0.018 9.6
United States 0.085 0.165 0.022 12.6

Panel B: Stock market returns in country J and first two PCs

Country

(1)
Premium earned
from risk of Πt,1

(2)
Premium earned
from risk of Πt,2

(3)
Percentage of variance

explained by Πt,1

(4)
Percentage of variance

explained by Πt,2

Australia 0.004 0.010 4.9 3.5
Canada 0.006 0.013 6.9 5.2
Denmark 0.014 0.013 12.0 4.8
Eurozone 0.011 0.015 5.9 5.3
Japan 0.008 0.021 2.4 4.8
New Zealand 0.006 0.011 10.3 3.6
Norway 0.006 0.009 2.3 3.3
Sweden 0.014 0.018 8.1 6.3
Switzerland 0.014 0.012 6.9 2.5
United Kingdom 0.009 0.009 7.2 2.2
United States 0.006 0.015 6.4 6.1

Notes. Country-specific OLS time-series regression Rt,J � αJ +∑2
K�1βJ,KΠt,K + εt,J to examine the effects of exchange rate risks captured by

the first two PCs Πt,1, Πt,2 on country J’s stock market excess returns Rt,J . Panel A reports the average and volatility of country J’s stock market
excess returns (denominated in local currency; columns (1) and (2)), the implied equity premium in (20) (column (3)), and the regression R2 or
percentage of stock market return variance explained by the two PCs combined (column (4)). Panel B reports the impact of each PC separately;
that is, the implied equity premia due to exposure to the first and second PC (columns (1) and (2)) and the percentage of stock market return
variance explained by the first and second PC (columns (3) and (4)). Excess stock returns are computed from monthly country-specific MSCI
Total Return Index series. All reported returns and volatilities are annualized.
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a lower frequency than daily data. As shown above,Πt,1

is somewhat similar to the Carry factor, whereas Πt,2

captures a more distinct risk. Thus, similar to the dis-
cussion in Section 3.2, it is interesting that Πt,2, which is
less studied in the literature, seems more important for
pricing.

4.3.2. Pricing Stocks Using Market Prices of PC Risks
Estimated from Stock Data. The test assets for the
following Fama andMacBeth (1973) regressions are the
220 international stock portfolios provided by Kenneth
French24 from 1984–2014 (to match our FX data). The
data covers the following 22 countries: Austria, Australia,
Belgium, Canada, Denmark, Finland, France, Germany,
Hong Kong, Ireland, Italy, Japan, Malaysia, the
Netherlands, NewZealand, Norway, Singapore, Spain,
Sweden, Switzerland, the United Kingdom, and the

United States. For each country we have 10 portfolios:
one value-weighted stock market index, four high and
four low valuation ratio portfolios (using the ratios book-
market, earnings-price, cash earnings-price, dividend
yield), and one zero-dividend portfolio. We take the
perspective of a U.S. investor in our estimations and
thus denominate all test assets in USD.
We estimate market prices of risk for our estimated

U.S. SDF M̂t,US and other popular factors.25 Following
Fama and French (2015), we use their five global fac-
tors, which include a world stock market (WMkt), size
(SMB), book-market (HML), operating profitability
(RMW), and investment (CMA) factor. Moreover, we
also include global momentum (MOM). Data for SMB,
HML, RMW, and CMA MOM is only available starting
in July 1990. Thus, all estimations cover the time period
1984–2014, except when we work with the global
Fama–French and momentum factors our sample pe-
riod shortens to 1990–2014. Following Brusa et al.
(2015), we further control for the Dollar (DOL) and
Carry (CAR) factors. We normalize all factors so that
they have an annual variance of 1. This normalization
is nonmaterial but useful to compare the magnitude of
estimated market prices across factors in the second stage
regression.
In the first stage we estimate for each test asset j the

month t conditional factor loadings βt,i,j using time-
series regression over the past 60 months,

Rτ,j � αt,j +
∑
i
βt,i,jFτ,i + ετ,j, (21)

where Rτ,j denotes the realized excess return of asset
j, Fτ,i the return of factor i, τ∈ {t − 61, . . . , t − 1}, αt,j is
the time-series abnormal return, and ετ,j an error.
Using rolling windows allows us to take into account
time variations in factor loadings. In the second stage

Figure 7. (Color online) Average Excess Returns vs. Implied
Equity Premia

Notes. Plot of average stock market excess returns (in local currency)
against implied risk premia (in local currency) according to (20)
(crosses). The diagonal line shows the regression fit when regressing
average excess returns on the implied premia.

Table 5. U.S. Stock Market and SDF

Horizon

(1)
Implied
equity

premium

(2)
Premium
earned

from PC 1

(3)
Premium
earned

from PC 2

(4)
Percentage
of variance
explained

(5)
Percentage
of variance
explained by

PC 1

(6)
Percentage
of variance
explained by

PC 2

1-day return 0.016 0.005 0.012 4.9 3.5 3.4
5-day return 0.023 0.007 0.016 10.0 7.5 6.6
10-day return 0.023 0.007 0.016 10.0 8.0 6.1
20-day return 0.023 0.008 0.015 11.1 9.6 5.7
60-day return 0.024 0.009 0.015 15.0 13.5 6.6
125-day return 0.024 0.010 0.015 15.9 14.2 7.1

Notes. Historical data (1984–2014): average U.S. stock market excess return, 0.085; volatility of U.S. stock market excess return, 0.165. U.S. stock
return OLS time-series regression RUS,t � αUS +∑2

K�1βUS,KΠt,K + εUS,t to examine the effects of exchange rate risks captured by the first two PCs
Πt,1,Πt,2 on U.S. stock market excess returns RUS,t over diverse holding periods (1, 5, 10, 20, 60, and 125 days). Columns (1)–(3) report the equity
premia implied by both PCs together and each PC separately. Columns (4)–(6) report the percentage of stockmarket return variance explained by
both PCs together and each PC separately. We use daily returns of a value-weighted U.S. stock market portfolio including all stocks in CRSP.
Reported results are for overlapping windows. All reported returns and volatilities are annualized.
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we then estimate the month t conditional market prices
γt,i of factors i using the cross-sectional regression,

Rt,j �
∑
i
βt,i,jγt,i + α∗

t,j, (22)

where α∗
t,j is the cross-section abnormal return. Finally,

we take the time-series average of γt,i as an estimate of
the market price of risk of factor i.

Table 6 reports factor loadings of the 22 stock market
portfolios estimated in the first-stage regression (21) for
a model with only the estimated U.S. SDF M̂t,US as
a pricing factor. To save space we only report factor
loadings for the 22 stockmarkets and omit the other 198
portfolios (tables for the other 198 test assets are
available on request). Notice that in the regressions in
Table 6 all stock market returns are denominated in
USD, and the pricing factor is the U.S. SDF, which is
different from the analysis in Table 4, in which we in-
vestigate the relationship between stock market returns
denominated in local currencies and local SDFs. Thus,
factor loadings and regression fits differ between Tables
4 and 6. Column (1) in Table 6 reports estimates of βi,j in an
unconditional regression (i.e., one time-series regression

for each test asset instead of rolling windows) and
column (2) the corresponding regression fit. Columns (3)
and (4) report the average and standard deviation of
conditional factor loadings βt,i,j from estimations in
rolling windows as described in (21), and column (5)
reports the average regression fit in the rolling window
estimations.
Every country’s stock market has a strong negative

exposure to the U.S. SDF, except for the Japanese and
Malaysian stock markets, which appear orthogonal to
the SDF. Remember that an increase in the SDF in-
dicates bad times (i.e., the market price of risk in the
SDF is by definition negative and the SDF is counter-
cyclical). A negative exposure means that these stock
markets drop in bad times. Thus, they are risky andwill
be compensated with a positive premium.
Notice that the Japanese stock market denominated

in JPY loads negatively on the Japanese SDF (Table 4)
and earns a positive premium. However, the loading of
the JPY/USD exchange rate (i.e., the currency exposure
of the Japanese stock market when denominated in
USD) is opposite (i.e., CTUS

t+dt,−US/+JP earns a negative
premium) and offsets the exposure of the local market

Table 6. Time-Series Regressions of International Stock Markets on U.S. SDF

Unconditional 60-month rolling windows

(1)
βJ

(2)
R2

(3)
Mean(βJ,t)

(4)
Std(βJ,t)

(5)
Mean(R2)

Austria −0.120∗∗∗ 23% −0.090 0.097 21%
Australia −0.136∗∗∗ 31% −0.104 0.083 26%
Belgium −0.087∗∗∗ 17% −0.068 0.076 18%
Canada −0.083∗∗∗ 18% −0.062 0.066 14%
Denmark −0.084∗∗∗ 18% −0.062 0.075 16%
Finland −0.104∗∗∗ 11% −0.077 0.080 14%
France −0.091∗∗∗ 17% −0.069 0.072 18%
Germany −0.101∗∗∗ 19% −0.080 0.065 18%
Hong Kong −0.082∗∗∗ 9% −0.059 0.070 13%
Ireland −0.115∗∗∗ 24% −0.085 0.089 17%
Italy −0.098∗∗∗ 13% −0.075 0.075 18%
Japan −0.001 0% 0.022 0.065 11%
Malaysia 0.015 0% 0.016 0.006 0%
Netherlands −0.096∗∗∗ 21% −0.070 0.082 17%
New Zealand −0.103∗∗∗ 19% −0.085 0.071 25%
Norway −0.128∗∗∗ 22% −0.100 0.084 18%
Singapore −0.090∗∗∗ 11% −0.066 0.078 14%
Spain −0.099∗∗∗ 15% −0.069 0.069 14%
Sweden −0.115∗∗∗ 19% −0.092 0.081 18%
Switzerland −0.070∗∗∗ 15% −0.051 0.051 17%
United Kingdom −0.082∗∗∗ 19% −0.058 0.060 18%
United States −0.054∗∗∗ 11% −0.037 0.049 12%
Mean −0.088 16% −0.065 0.070 16%

Notes. Monthly OLS time-series regressions of each country J’s stock market excess return Rt,J (denominated in USD) on the U.S. SDF M̂US

estimated according to (9) (and rescaled to set its variance equal to 1), Rt,J � αJ + βJ
⃦⃦
γ̂J

⃦⃦−2 (dM̂t,US/M̂t,US
) + εt, J . αJ is a constant, εt, J is an error,

βJ measures the exposure of stock market J to the U.S. SDF. Columns (2) and (3) report slope coefficient βJ and regression R2 for unconditional
regressions (i.e., one regression per country for entire time series). Columns (3), (4), and (5) report the averages and standard deviations of the
slope coefficients βJ,t and the average regression R2 of regressions of 60-month rolling windows for each country J. We use monthly data from
1984 to 2014. Robust standard errors are estimated following Newey and West (1987).

*10%, **5%, and ***1% significance of the slope coefficients in column (1).
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to the priced risk. In contrast, the currency and the
stock market exposures to priced risk are the same for
other countries, and thus the regression fit increases
in Table 6 compared with the analysis in Table 4. Re-
gressionfits in the rollingwindowestimations (column (5))
are similar to the ones in the unconditional regressions.
Whereas column (3) in Table 6 shows that the average
factor loadings in the rolling window regressions are
similar to the loadings in the unconditional regressions,
column (4) displays substantial variations in the condi-
tional loadings. This finding is consistent with the esti-
mations in Brusa et al. (2015), albeit their pricing factors
differ from ours.

Table 7 reports the market prices γi estimated in the
second-stage cross-sectional regressions (i.e., averages
of conditional market prices γt,i in regression (22)). The
regression includes all 220 test assets. The first row
reports estimated market prices of the U.S. SDF M̂t,US

across several model specifications: model with M̂t,US

as a single factor (column (1)), M̂t,US, DOL, and CAR
(column (2)), M̂t,US andWMkt (column (3)), M̂t,US,DOL,
CAR, and WMkt (column (4)), M̂t,US, five global Fama–
French factors, and MOM (column (5)), and all nine
factors combined (column (6)). As aforementioned, all
factors are normalized to have an annual volatility of
1. Hence the estimated market price γi is theoretically
equal to the Sharpe ratio of an asset that perfectly neg-
atively correlates with the pricing factor (i.e., a factor
mimicking asset). This normalization makes the inter-
pretation of themagnitudes of the estimatedmarket prices
and comparisons across pricing factors more convenient.
The market price γM of the U.S. SDF is statistically

significant and economically large across all six model
specifications. It is negative as expected; that is, an asset
that positively (negatively) correlates with the SDF
is considered a hedge (risk) and is compensated with

Table 7. Cross-Sectional Regressions of International Stock Markets on U.S. SDF

(1) (2) (3) (4) (5) (6)

γM −0.80∗∗ −0.64∗∗ −0.71∗∗∗ −0.64∗∗∗ −0.40∗∗ −0.42∗∗
(2.24) (2.12) (3.50) (3.22) (2.00) (2.04)

γDOL — 0.59∗ — 0.44∗∗ — 0.31
— (1.81) — (2.02) — (1.39)

γCAR — 0.79∗∗∗ — 0.76∗∗∗ — 0.78∗∗∗
— (2.66) — (3.27) — (3.37)

γWMkt — — 0.37∗ 0.37∗ 0.37 0.42∗
— — (1.81) (1.76) (1.57) (1.76)

γSMB — — — — 0.13 0.06
— — — — (0.53) (0.25)

γHML — — — — 0.35 0.33
— — — — (1.59) (1.49)

γRMW — — — — 0.55∗∗ 0.57∗∗
— — — — (2.39) (2.50)

γCMA — — — — −0.07 −0.11
— — — — (0.27) (0.47)

γMOM — — — — −0.07 −0.10
— — — — (0.33) (0.50)

N assets 220 220 220 220 220 220
No. significant α∗
1% level 10 5 8 8 8 5
5% level 27 24 23 25 11 13
10% level 42 36 40 41 15 26

MAPE 5.14 4.48 4.65 4.25 3.25 3.16
RMSE 7.32 6.10 6.91 6.21 5.00 4.86

Notes. Fama andMacBeth (1973) cross-sectional regressions Rt,j � ∑
iβt,i,jγt,i + α∗

t,j at each time t. Conditional factor loadings βt,i,j are estimated in
time-series regressions Rτ,j � αt,j +∑

iβt,i,jFτ,i + ετ,j for τ∈ {t − 61, . . . , t − 1} using 60-month rolling windows. We test the following factors Ft,i:
U.S. SDF (M̂t,US), Dollar (DOL), carry (CAR), world stock market portfolio (WMkt), four global Fama and French (1992) factors
(SMB,HML,RMW,CMA), and global momentum (MOM). We normalize all factors such that the annual volatility is 1. α∗

t,j is the abnormal return
of asset j in the cross-sectional regression. The reportedmarket prices γi are annualized time-series averages of γt,i.N assets indicates the number
of test assets j. For each of 22 countries we have 10 portfolios: one country-specific stock market portfolio, two Book/Market, two Earnings/Price,
two Cashflow/Price, and three Dividend Yield sorted portfolios. Monthly returns (from 1984 to 2014) are provided by Kenneth French on his
website. No. significant α∗ reports the number of test assets with significant average abnormal returns at the 1%, 5%, 10% level according to the
pricing model under consideration.MAPE is the annualized mean absolute pricing error (α∗) in percentage. RMSE is the annualized root mean
square pricing error (α∗) in percentage. For columns (1)–(4), we have data from 1984 to 2014. The global Fama–French factors in columns (5) and (6) are
only available since July 1990.

*10%, **5%, and ***1% significance of the market prices.
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a negative (positive) premium. Themagnitude decreases
after controlling for various other factors. In particular, in
the single-factor model (column (1)) the market price of
the SDF is −0.80, and it adjusts to (still a large value of)
−0.42 after controlling for all other factors. Interestingly,
the adjustment is not very large after controlling for
DOL and CAR (i.e., it is still −0.64). This further il-
lustrates and enforces the discussion in Section 3.2 that
important dimensions of the SDF we estimate from FX
data are not in the space spanned by DOL and CAR.
Besides the SDF, CAR, and RMW remain important
factors with statistically and economically significant
market prices. The market price of WMkt is only
significant at the 10% level. All other factors do not
earn a significant risk premium in the cross-section
of international stock returns. The fact that the SDF
estimated from FX data does not crowed out all other
factors means that there are some important risks
that our PCs do not pick up. On the up side, the risks
of our FX market PCs seem important outside of FX
markets, besides several prominent factors described in
the literature.

Overall, we conclude that the U.S. SDF M̂t,US is
an important pricing factor in the cross-section of
international stock returns, but it does not explain all

the priced risks. In particular, CAR and RMW (and
WMkt) seem to carry important pricing information
(for international stock returns) in addition to the priced
risks captured by the SDF estimated from FX data.
Next, we decompose the SDF and investigate the

pricing implications of the first two PCsΠt,1 andΠt,2 of
exchange rate growths separately. As above we use the
two-stage Fama and MacBeth (1973) regressions (21)
and (22) but remove the U.S. SDF M̂t,US and instead use
the two PCsΠt,1 andΠt,2 as new pricing factors. Notice
that the SDF is a linear combination of the two PCs, and
thus, if the relative market prices γΠt,1 and γΠt,2 esti-
mated in the cross-section of stock returns are the
same as γ̂US

1 and γ̂US
2 in FX markets, then the regres-

sions using the U.S. SDF or the two PCs are identical.
Empirically, the analysis involving the two PCs allows
for more flexibility than the regression using the
U.S. SDF.
Table 8 reports the factor loadings of each of our 22

stock markets (denominated in USD) on the two PCs.26

In columns (1) and (2) are factor loadings in uncon-
ditional regressions; that is, one regression for each
country’s stockmarket (analogous to column (1) inTable 6).
Columns (3)–(6) report time-series averages and standard
deviations of conditional factor loading in regressions

Table 8. Time-Series Regressions of International Stock Markets on First Two PCs

Unconditional 60-month rolling windows

(1) β1,J (2) β2,J (3) Mean(β1,J,t) (4) Std(β1,J,t) (5) Mean(β2,J,t) (6) Std(β2,J,t)
Austria −0.018 0.101∗∗∗ −0.011 0.018 0.089 0.090
Australia −0.102∗∗∗ 0.089∗∗∗ −0.097 0.032 0.079 0.069
Belgium 0.007 0.080∗∗∗ 0.006 0.028 0.072 0.071
Canada −0.062∗∗∗ 0.054∗∗∗ −0.068 0.029 0.041 0.051
Denmark −0.008 0.071∗∗∗ −0.005 0.032 0.060 0.073
Finland −0.061∗∗∗ 0.076∗∗∗ −0.054 0.050 0.070 0.080
France −0.007 0.079∗∗∗ −0.016 0.047 0.068 0.072
Germany −0.008 0.087∗∗∗ −0.017 0.059 0.080 0.062
Hong Kong −0.068∗∗∗ 0.051∗∗∗ −0.074 0.032 0.039 0.066
Ireland −0.033∗∗ 0.092∗∗∗ −0.028 0.026 0.078 0.081
Italy −0.016 0.082∗∗∗ −0.025 0.041 0.074 0.075
Japan 0.008 0.003 0.011 0.072 −0.033 0.063
Malaysia −0.087∗ −0.043∗∗ −0.127 0.028 −0.056 0.007
Netherlands −0.015 0.081∗∗∗ −0.014 0.040 0.067 0.079
New Zealand −0.081∗∗∗ 0.069∗∗∗ −0.079 0.032 0.067 0.056
Norway −0.040∗∗∗ 0.101∗∗∗ −0.041 0.025 0.093 0.079
Singapore −0.072∗∗∗ 0.057∗∗∗ −0.074 0.056 0.041 0.070
Spain −0.012 0.084∗∗∗ −0.013 0.045 0.072 0.079
Sweden −0.044∗∗∗ 0.088∗∗∗ −0.052 0.047 0.081 0.076
Switzerland 0.006 0.064∗∗∗ 0.008 0.035 0.053 0.051
United Kingdom −0.018∗ 0.068∗∗∗ −0.019 0.036 0.050 0.055
United States −0.042∗∗∗ 0.035∗∗∗ −0.044 0.032 0.023 0.045
Mean −0.035 0.067 −0.038 0.038 0.055 0.066

Notes. Monthly OLS time-series regressions of each country J’s stock market excess return Rt,J (denominated in USD) on the first two PCs Πt,1
and Πt,2, Rt,J � αJ + β1,JΠt,1 + β2,JΠt,2 + εt,J . αJ is a constant, εt,J is the error, β1,J and β2,J measure the exposures of stock market J to Πt,1 and Πt,2.
Columns (1) and (2) report slope coefficient β1,J and β2,J for unconditional regressions (i.e., one regression per country for entire time series).
Columns (3)–(6) report the averages and standard deviations of the slope coefficients βt,1,J and βt,2,J of regressions of 60-month rolling windows
for each country J. We use monthly data from 1984 to 2014. Robust standard errors are estimated following Newey and West (1987).

*10%, **5%, and ***5% significance of the slope coefficients in column (1).
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of 60-month rollingwindows (analogous to columns (3)
and (4) in Table 6). We observe that all stock markets
(with the exception of the Japanese and the Malaysian
markets) have a significant positive exposure to the
second PC. Our analysis in Section 3.2 suggests that the
market price of the second PC is positive, and thus it
is negatively related to the SDF (i.e., the second PC
is procyclical). In turn, this means that an asset that is
positively exposed to the second PC is risky and is
compensated by a positive premium, which is what we
generally expect about stock markets. Exposures to the
first PC are mostly negative, but they are significant for
only half of the investigated stock markets. The first
PC’s market price is negative when estimated in FX
markets, which implies a positive relationship with the
SDF, and the first PC is counter-cyclical. In turn, an

asset that negatively correlates with the first PC is
risky and earns a positive premium, which is again
what we generally expect for stock markets. We fur-
ther observe that average conditional loadings are
similar to that of the unconditional estimates, and
there is a large time-series variation in conditional
factor loadings (columns (2)–(6)).
Table 9 is analogous to Table 7 and reports the es-

timated market prices γi in the cross-section of interna-
tional stock returns. As expected, the market price ofΠt,1
is negative and the one of Πt,2 is positive across all
model specifications. This is in line with the estimates
of market prices from FX market data in Table 1; that
is, Πt,1 (Πt,2) positively (negatively) affects the SDF,
and an asset that loads negatively (positively) on
Πt,1 (Πt,2) is risky and is compensated with a positive

Table 9. Cross-Sectional Regressions of International Stock Markets on First Two PCs

(1) (2) (3) (4) (5) (6)

γΠt,1
−0.12 −0.06 −0.25 −0.17 −0.08 −0.24
(0.38) (0.25) (1.02) (0.70) (0.31) (0.89)

γΠt,2
0.74∗∗ 0.65∗∗ 0.65∗∗∗ 0.59∗∗∗ 0.38∗ 0.41∗
(2.39) (2.41) (3.18) (2.92) (1.85) (1.97)

γDOL — 0.62∗∗ — 0.41∗ — 0.26
— (2.10) — (1.95) — (1.17)

γCAR — 0.72∗∗ — 0.73∗∗∗ — 0.80∗∗∗
— (2.56) — (3.17) — (3.55)

γWMkt — — 0.36∗ 0.38∗ 0.40∗ 0.43∗
— — (1.74) (1.82) (1.68) (1.81)

γSMB — — — — 0.18 0.12
— — — — (0.77) (0.53)

γHML — — — — 0.33 0.36
— — — — (1.50) (1.63)

γRMW — — — — 0.56∗∗ 0.55∗∗
— — — — (2.44) (2.41)

γCMA — — — — −0.14 −0.17
— — — — (0.57) (0.69)

γMOM — — — — −0.04 −0.09
— — — — (0.18) (0.47)

N assets 220 220 220 220 220 220
No. significant α∗
1% level 9 10 7 8 7 4
5% level 21 27 22 20 12 14
10% level 42 43 42 35 19 29

MAPE 5.17 4.49 4.55 4.08 3.22 3.14
RMSE 7.64 6.20 6.77 6.02 4.93 4.78

Notes. Fama andMacBeth (1973) cross-sectional regressions Rj,t � ∑
iβi,j,tγi,t + α∗

j,t at each time t. Conditional factor loadings βi,j,t are estimated in
time-series regressionsRj,τ � αj,t +∑

iβi,j,tFi,τ + εj,τ for τ∈ {t − 61, t − 1} using 60-month rollingwindows.We test the following factors Fi: first two
PCs (Π1,Π2), Dollar (DOL), carry (CAR), world stock market portfolio (WMkt), four global Fama and French (1992) factors
(SMB,HML,RMW,CMA), and global momentum (MOM). We normalize all factors such that the annual volatility is 1. α∗

t,j is the abnormal
return of asset j in the cross-sectional regression. The reported market prices γi are annualized time-series averages of γt,i. N assets indicates the
number of test assetsRj. For each of 22 countrieswehave 10 portfolios: one country-specific stockmarket portfolio, twoBook/Market, twoEarnings/
Price, two Cashflow/Price, and three Dividend Yield sorted portfolios. Monthly returns (from 1984 to 2014) are provided by Kenneth French on his
website. No. significant α∗ reports the number of test assets with significant average abnormal returns at the 1%, 5%, 10% level according to the
pricing model under consideration. MAPE is the annualized mean absolute pricing error (α∗) in percentage. RMSE is the annualized root mean
square pricing error (α∗) in percentage. For columns (1)–(4), we have data from 1984 to 2014. The global Fama–French factors in columns (5) and (6)
are only available since July 1990.

*10%, **5%, and ***1% significance of the market prices.
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premium. Though the sign is consistent for both PCs,
the estimated price of risk is only statistically sig-
nificant for Πt,2. The estimated price of risk γΠt,1

is
between −0.25 and −0.08 across the diverse model
specifications. The magnitude of the price of risk γΠt, 2
decreases from 0.74 in a model with only the two PCs as
pricing factors to (still a large value of) 0.41 after con-
trolling for all other pricing factors. These values are
comparable to (and not statistically significantly dif-
ferent from) the estimated market prices from FX data
in Table 1 (i.e., −0.143 forΠt,1 and 0.369 forΠt,2). Thus,
the two PCs are priced similarly in stock and FX
markets. Consistent with the analysis using the U.S.
SDF M̂t,US, we find again that CAR and RMW (and
WMkt) are important factors in addition to the two
PCs from exchange rate growths.

4.4. Financial Stress Indicators and
Macroeconomic Fundamentals

We now analyze the correlation of various financial
stress indicators with our estimated SDF growths
dM̂t,US/M̂t,US in the United States and the first two PCs
Πt,1 andΠt,2. All our financial stress data are specific to
the United States and thus we restrict our analysis
to the U.S. SDF.

Our first set of financial stress variables are the Chicago
Federal Reserve Bank Financial Condition Index and
its four subindices: Risk, Credit, Leverage, and Non-
Financial Leverage.27 We use monthly changes in these
indices in our analysis.

Our second set of stress variables proxy for volatility.
Following Menkhoff et al. (2012a), we construct a
monthly FXmarket volatility measure as the average of
absolute daily exchange rate changes within a month
and across currencies.Wedenotemonthly changes in the
FX market volatility by ΔFX Volatility. We download
monthly data for the S&P 500 Volatility Index (VIX) from
Cboe.28ΔVIX indicates monthly changes in the VIX. He
et al. (2016) provide data on the capital ratio of primary
dealers and use this variable as a proxy for risk in an
intermediary asset pricing model. ΔIntermediary Capital
Ratio denotes monthly changes of their measure. Finally,
we use six volatility measures provided by Giglio et al.
(2016), who aggregate risk measures of the top 20 fi-
nancial institutions. ΔVolatility (Top 20 Fin) is the
monthly change in the average return volatility of the
top 20 financial institutions. ΔTurbulence (Top 20 Fin) is
the monthly change in the average of the returns’ recent
covariance relative to a longer-term covariance (Kritzman
and Li 2010). ΔSize Concentration (Top 100 Fin) is the
monthly change in the Herfindal index of the size dis-
tribution among the top 100 financial institutions.

Our third set of variables is measuring tail risk. We
use three measures provided by Giglio et al. (2016).
ΔCatFin (Top 20 Fin) is the monthly change in the cross-
sectional value-at-risk measure of Allen et al. (2012).

Note that although standard value-at-risk measures
typically use a time series of returns (of a firm or an
index) to estimate a potential loss, CatFin uses the cross-
section of returns at a point in time and thus estimates
systemic risk instead of individual firm risk. ΔBook and
ΔMarket Leverage (Top 20 Fin) are monthly changes in
average book and market leverage.
Fourth, we look at two illiquidity risk measures.ΔFX

Illiquidity is themonthly change in theFXmarket illiquidity
measure of Karnaukh et al. (2015), which is constructed
from high-frequency exchange rates against the USD.29

Moreover,we useΔAmihud, which is themonthly change
in the average stock illiquidity of the top 20 financial
institutions using the measure of Amihud (2002).
Fifth, we look at credit risk measures. ΔDefault

Spread is the monthly change in the difference between
BAA and AAA corporate bond yields. ΔTED Spread is
themonthly change in the difference between the three-
month LIBOR and T-Bill interest rates. ΔTerm Spread
is the monthly change in the difference between the
10-year and 3-month U.S. Treasury yields.
Finally, we look at contagion risks within the financial

industry and use five measures provided by Giglio et al.
(2016). ΔAbsorption (Top 20 Fin) is the monthly change in
the fraction of return variance of the top 20 financial
institution explained by the first three PCs (of the 20
return time series) (Kritzman et al. 2010).ΔCoVaR (Top 20
Fin) is themonthly change in the averageCoVaRmeasure
by Adrian and Brunnermeier (2016). CoVaR measures
systemic risk as the value-at-risk of the financial system
conditional on an institution being in distress. ΔDynamic
Causality Idx (Top 20 Fin) is the monthly change in the
fraction of significant Granger–causality relationships
among the returns of the top 20 financial institutions
(Billio et al. 2012). ΔInternational Spillover is the monthly
change in the index of Diebold and Yilmaz (2009), which
measures comovement in macroeconomic quantities
across countries.ΔMES (Top 20 Fin) is themonthly change
in the average of the top 20 financial institutions’ expected
returns conditional on the financial system being in its
lower tail (Acharya et al. 2017).
With the exception of ΔIntermediary Capital Ratio

and ΔTerm Spread, all these financial stress measures
are counter-cyclical; that is, an increase (or a positive
change) indicates bad times. ΔIntermediary Capital Ratio
is procyclical; that is, a positive realization is good news
because an increase in the capital ratio of interme-
diaries relaxes constraints in an intermediary asset
pricing model (He et al. 2016). Moreover, an increase
in the slope of the yield curve (i.e., a positive value for
ΔTerm Spread) predicts increases in future gross do-
mestic product (GDP) growth, and it is procyclical (Ang
et al. 2006).
Remember that the SDF is counter-cyclical; that is, an

increase (or a positive realization in dM̂t,US/M̂t,US) in-
dicates bad times.Moreover, thefirst (second) PC carries
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a negative (positive) market price of risk and thus
is positively (negatively) related to the SDF and
counter-cyclical (procyclical) (see Table 1). Thus, a positive
realization in the first PC indicates bad times, whereas
a positive realization in the second PC indicates good
times.

Table 10 shows that the sign of the correlation co-
efficients is consistent with our interpretation of the
variables. The U.S. SDF positively correlates with all stress
indicators except for ΔIntermediary Capital Ratio and
ΔTerm Spread, for which the correlation coefficient is
negative. Out of 24 correlation coefficients, 15 are
significant at the 1% level, and 4 coefficients are sig-
nificant at the 10% level (but not at the 1% level). The
SDF is strongly positively correlated to changes in the
Chicago Fed Financial Conditions Index and its Risk,
Credit, and Leverage subindices (correlation coeffi-
cients ranging between 27% and 35%). It is, however
orthogonal to the subindex capturing nonfinancial le-
verage. We find similarly strong correlations between
these indices and the first and the second PC. Note that

the correlation for the first PC is positive and for the
second it is negative, which is consistent with the in-
terpretation that an increase in the first (second) PC is
bad (good) news. Because the Chicago Fed Index is
a combination of 105 financial activity variables, we
further investigate some of its components.
The estimated SDF is positively related to changes in

the FX market volatility, the VIX, the average volatil-
ity of the top 20 financial institutions, and the size
concentration in the financial industry. The SDF is
negatively correlated to changes in the intermediary
capital ratio. We find no significant relationship be-
tween our SDF and changes in turbulence (which
captures the current covariance between returns
compared with the long run) and book leverage. We
conclude that our SDF captures important volatility
dimensions. Although both PCs are related to the vol-
atility variables, the first PC is more exposed to changes
in the intermediary capital ratio, and the second PC is
stronger related to changes in the size concentration in
the financial industry.

Table 10. Financial Stress Indicators

(1)
M̂US

(2)
Π1

(3)
Π2

Federal Reserve Bank indicators
ΔChicago Fed Fin Con Idx 0.35∗∗∗ 0.29∗∗∗ −0.26∗∗∗
ΔChicago Fed Fin Con Idx (Risk) 0.33∗∗∗ 0.24∗∗∗ −0.26∗∗∗
ΔChicago Fed Fin Con Idx (Credit) 0.34∗∗∗ 0.31∗∗∗ −0.24∗∗∗
ΔChicago Fed Fin Con Idx (Leverage) 0.27∗∗∗ 0.17∗∗∗ −0.22∗∗∗
ΔChicago Fed Fin Con Idx (Non-Fin Leverage) −0.00 0.05 0.02

Volatility
ΔFX Volatility 0.28∗∗∗ 0.19∗∗∗ −0.22∗∗∗
ΔVIX 0.38∗∗∗ 0.31∗∗∗ −0.30∗∗∗
ΔVolatility (Top 20 Fin) 0.21∗∗∗ 0.26∗∗∗ −0.12∗∗
ΔTurbulence (Top 20 Fin) 0.06 0.08 −0.03
ΔIntermediary Capital Ratio −0.25∗∗∗ −0.30∗∗∗ 0.15∗∗∗
ΔSize Concentration (Top 100 Fin) 0.17∗∗∗ 0.03 −0.17∗∗∗

Tail Risk
ΔCatFin (Top 20 Fin) 0.15∗∗∗ 0.21∗∗∗ −0.08
ΔBook Leverage (Top 20 Fin) 0.03 −0.11∗ −0.07
ΔMarket Leverage (Top 20 Fin) 0.16∗∗∗ 0.16∗∗∗ −0.10∗

Illiquidity
ΔFX Illiquidity 0.32∗∗∗ 0.12∗ −0.29∗∗∗
ΔAmihud (Top 20 Fin) 0.11∗ 0.05 −0.09∗

Credit
ΔDefault Spread 0.21∗∗∗ 0.10∗ −0.18∗∗∗
ΔTED Spread 0.11∗∗ 0.11∗∗ −0.08
ΔTerm Spread −0.12∗∗ −0.03 0.11∗∗

Contagion
ΔAbsorption (Top 20 Fin) 0.06 0.12∗∗ −0.02
ΔCoVaR (Top 20 Fin) 0.22∗∗∗ 0.24∗∗∗ −0.14∗∗
ΔDynamic Causality Idx (Top 20 Fin) 0.10∗ 0.15∗∗∗ −0.05
ΔInternational Spillover 0.04 −0.01 −0.05
ΔMES (Top 20 Fin) 0.18∗∗∗ 0.15∗∗∗ −0.13∗∗

Notes. Monthly correlations between changes in financial stress indicators and the SDF growth in the United States and the first two PCs. Details
of all financial stress indicators are in the main text.

*10%, **5%, and ***1% significance of the correlation coefficients.
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The SDF is also positively related to changes in the
tail risk variables CatFin index and market leverage of
the top20financialfirms.There is no significant relationship
between the SDF and the book leverage. Thus, our SDF
captures important tail risks in the financial industry.
Interestingly, only the first PC is significantly related to
these tail risk variables.

Our SDF is further related to changes in FX market
illiquidity and average illiquidity of the top 20 financial
firms. The correlations are positive, as expected. Thus,
the SDF is strongly related to measures of illiquidity.
We find that the first PC is only weakly related to
changes in FX market illiquidity and not significantly
related to changes in illiquidity of financial firms. In
contrast, these correlations are stronger and significant
for the second PC.

The SDF is positively correlated to default and TED
spreads and negatively correlated to the term spread,
which is consistent with our expectation. Interestingly,
the first PC significantly correlates with changes in the
TED spread, but the correlation to changes in the de-
fault spread is weak, and the correlation to changes in
the term spread is insignificant. In contrast, the second
PC has a stronger and significant correlation with both
changes in the default and term spread, whereas its
correlation with the TED spread is insignificant.

Finally, we find that our SDF is significantly corre-
lated with changes in the CoVaR and the MES indices
at the 1% level and the Dynamic Causality Index at the
10% level. It seems unrelated to changes in theAbsorption
and International Spillover measures. Thus, there is some
evidence that the SDF is related to contagion measures.
The first PC is stronger correlated to most contagion
measures than the second PC. Both PCs seem unrelated
to changes in the International Spillover measure.

In summary, our SDF estimated from FXmarket data
correlates with a broad set of financial stress indica-
tors, capturing volatility, tail risk, illiquidity, credit, and
contagion risk in financial markets. Although several
stress indicators correlate similarly with the first and the
second PC, there are some differences. The first PC is
associated with the TED spread and quantities that
measure volatility, tail, and contagion risks. The second
PC is associated the default and term spreads and
quantities that measure volatility and illiquidity.

Next, we explore the relationship between our
country-specific SDFs and PCs and macroeconomic
fundamentals. We consider the following 10 quantities:
GDPgrowth (ΔGDP), change in output gap (ΔOutputGap),
consumption growth (ΔConsumption), capital formation
growth (ΔCapitalFormation), industrial production growth
(ΔIndProduction),manufacturing growth (ΔManufacturing),
construction growth (ΔConstruction), change in the
unemployment rate (ΔUnemployment), change in the
overnight rate (ΔOvernightRate), and change in the 10-year
government bond rate (ΔLongTermRate). All variables are

per capita (except unemployment and interest rates) and
adjusted for inflation (except unemployment). Output gap
is estimated as the difference between GDP and its
smooth trend using a Hodrick and Prescott (1997) filter
with a smoothing factor of 1,600 as suggested for
quarterly data. The data for all 11 countries, for which
we have estimated country-specific SDFs, is provided
by the Organisation for Economic Co-operation and
Development and is available on a quarterly frequency
for our entire time horizon, 1984–2014.
Remember that the SDF is counter-cyclical (i.e., an

increase in country J’s SDF is a bad shock for country J).
After a bad shock we expect GDP, output gap, con-
sumption, capital formation, industrial production
manufacturing, and construction to drop in country J
(i.e., a negative correlation to the local SDF). Similarly,
after a bad shock growth prospects are lower, and we
expect short- and long-term interest rates to drop,
implying a negative correlation as well. The exception
is unemployment, which we expect to increase in re-
sponse to a bad shock, implying a positive correlation
to the SDF.
We use lead-lag within-panel regressions to in-

vestigate the effect of a change in a country-specific SDF
M̂t,J from quarter t − 1 to t on future changes in macro-
economic quantities in the corresponding country from
quarter t to t + h,

Yt,t+h,J � cJ + θ
M̂t,J − M̂t−1,J

M̂t−1,J

+∑4
k�1

δkYt−k,t−k+1,J + εt,t+h,J , (23)

where Yt,t+h,J is the change or growth of a macroeco-
nomic quantity in country J over h quarters from t to
t + h, cJ is a country-specific constant, (M̂t,J − M̂t−1,J)/
M̂t−1,J is the growth rate of the SDF in country J over
the quarter t − 1 to t estimated according to (9),
Yt−k,t−k+1,J are past realizations of the macroeconomic
quantity to control for potential autocorrelation in YJ ,
and εt,J is the regression error. Some of the macro-
economic quantities are persistent, and we find that
four quarterly lags are sufficient to remove all auto-
correlation (in most cases fewer than four lags are
sufficient). Because we work with overlapping ob-
servations we estimate standard errors following the
approach of Hodrick (1992). We further cluster errors
within time to account for correlation across countries.
Column (1) in Table 11 reports the slope coefficient
estimate θ, column (2) the corresponding t-statistics,
and column (3) the goodness of the regression fit.
Table 11 has four panels reporting results for regressions
with h � {1, 2, 3, 4}.
We observe that the sign of the regression coeffi-

cient θ is in all regressions as expected (i.e., implying a
negative correlation between the SDF and all quantities
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except for unemployment). However, there is a lot of
noise, and only the coefficient on the change in the
long-term interest rate is statistically significant when
h � 1. For longer horizons of two, three, or four quarters
(h � {2, 3, 4}), several of the regression coefficients be-
come statistically significant at the 5% or 10% level.
Overall, we take this as evidence that our estimated
SDFs from FX data reflect future changes in macro-
economic fundamentals.
Finally, we investigate the effects of the two PCsΠt,1

and Πt,2 separately on macroeconomic quantities. We
use similarwithin-panel regressions as in (23) but replace
the SDF by the two PCs and control for the exchange rate
between J and the United States,

Yt,t+h,J � cJ +
∑2
K�1

θKΠt−1,t,K + ϑ
EXt,J/US − EXt−1,J/US

EXt−1,J/US

+∑4
k�1

δkYt−k,t−k+1,J + εt,t+h,J . (24)

Whereas the SDF in the regressions (23) was country-
specific, the PCs in (24) are not. Thus, controlling for
exchange rates addresses this issue. Though this is con-
ceptually important, empirically the results are qua-
litatively the same (and quantitatively very similar)
whether we control for exchange rates or not. The
estimations of market prices of risk of the two PCs
from either FX or stock returns (Sections 3.2 and 4.3)
suggest that an increase (decrease) inΠt,1 (Πt,2) is a bad
shock. Thus, we expected negative (positive) regression
coefficients θ1 (θ2) for all macroeconomic variables
except for unemployment, for which we expect the
opposite.
Table 12 shows that our intuition is confirmed in the

data, and the sign on all regression coefficients is as
expected. None of the regression coefficients on Πt,2 is
statistically significant except for the coefficients on the
change in the long-term interest rate at short horizons
h � {1, 2}, which are significant at the 5% level. In
contrast, we find that most of the coefficients onΠt,1 are
highly statistically significant (at the 1% level). More-
over, the relationship seems much stronger at longer
horizons (i.e., coefficients are more significant for
h � {3, 4}). This is an interesting finding. First, it seems
that some of the results in regressions (23) (Table 11) are
relatively modest because Πt,2 is not strongly associ-
ated with most macroeconomic fundamentals (except
for the long-term interest rate) and the SDF puts
a larger weight on Πt,2 than Πt,1. Second, although Πt,2
is more important for pricing FX and stock market
returns (i.e., estimated market prices are larger in
magnitude for Πt,2), Πt,1 is much more strongly asso-
ciated with a broad set of macroeconomic quantities.
Third, the results forΠt,1 suggest that it captures news
about economic growth, especially at a horizons of three

Table 11. Macroeconomic Panel Regressions: SDFs

Yt,t+h,J
(1)

Coefficient
(2)

(t-statistic)
(3)

R2 (%)

One quarter ahead (h � 1)
ΔGDP −0.00808 (−1.25) 4.43
ΔOutputGap −0.00766 (−1.47) 3.95
ΔConsumption −0.00562 (−1.53) 11.30
ΔCapitalFormation −0.01939 (−1.19) 3.16
ΔIndProduction −0.02155 (−1.18) 8.36
ΔManufacturing −0.02431 (−1.09) 7.16
ΔConstruction −0.01608 (−1.25) 3.43
ΔUnemployment 0.03413 (1.06) 11.02
ΔOvernightRate −0.57474 (−1.58) 1.25
ΔLongTermRate −0.45161∗∗ (−2.53) 9.55

Two quarters ahead (h � 2)
ΔGDP −0.01432 (−1.47) 5.82
ΔOutputGap −0.01432∗ (−1.84) 7.32
ΔConsumption −0.00807∗ (−1.69) 11.91
ΔCapitalFormation −0.03752 (−1.41) 5.87
ΔIndProduction −0.04019 (−1.41) 7.68
ΔManufacturing −0.04777 (−1.38) 8.37
ΔConstruction −0.02442 (−1.14) 4.88
ΔUnemployment 0.07862 (1.47) 13.41
ΔOvernightRate −0.92907∗ (−1.91) 2.08
ΔLongTermRate −0.65821∗∗∗ (−2.77) 10.85

Three quarters ahead (h � 3)
ΔGDP −0.01574∗ (−1.70) 5.06
ΔOutputGap −0.01454∗∗ (−2.00) 9.02
ΔConsumption −0.00968∗∗ (−2.02) 13.70
ΔCapitalFormation −0.04759∗ (−1.77) 6.85
ΔIndProduction −0.03925 (−1.47) 5.85
ΔManufacturing −0.04785 (−1.49) 6.55
ΔConstruction −0.03017 (−1.40) 5.91
ΔUnemployment 0.09377∗ (1.66) 11.60
ΔOvernightRate −0.93429∗ (−1.84) 2.14
ΔLongTermRate −0.52517∗ (−1.70) 9.62

Four quarters ahead (h � 4)
ΔGDP −0.01644 (−1.63) 4.24
ΔOutputGap −0.01549∗ (−1.93) 10.08
ΔConsumption −0.00917∗ (−1.76) 13.91
ΔCapitalFormation −0.04974∗ (−1.77) 6.62
ΔIndProduction −0.03751 (−1.29) 4.59
ΔManufacturing −0.04319 (−1.24) 5.02
ΔConstruction −0.03262 (−1.42) 6.09
ΔUnemployment 0.10713∗ (1.84) 10.35
ΔOvernightRate −0.96566∗ (−1.80) 2.72
ΔLongTermRate −0.36099 (−1.03) 7.31

Notes. Quarterly within-panel regressionsYt,t+h,J � cJ +θ ((M̂t,J −M̂t−1,J)/
M̂t−1,J)+∑4

k�1δkYt−k,t−k+1,J +εt,t+h,J , where Yt,t+h,J is the change or
growth of a macroeconomic quantity in country J over h quarters
from t to t+h, cJ is a country-specific constant, (M̂t,J −M̂t−1,J)/M̂t−1,J
is the growth rate of the SDF in country J over quarter t−1 to
t estimated according to (9), Yt−k,t−k+1,J are past realizations of the
macroeconomic quantity which captures the persistence in YJ , εt,t+h,J is
the regression error. Column (1) reports the slope coefficient estimateθ,
(2) the t-statistics of θ, and (3) the regression R2 in percentage points.
Errors are clustered within time and adjusted for overlapping
observations according to Hodrick (1992).

*10%, **5%, and ***1% significance of the slope coefficients.
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to four quarters. In contrast,Πt,2 seems to capture short-
term (one to two quarters) changes in bondmarkets (long-
term interest rate), but the association with quantities that
capture economic growth is insignificant.

Overall, we conclude that the country-specific SDFs
M̂t,J estimated from FX market data according to (9)
are related to fundamentals, which is important out-
of-sample evidence in favor of our estimation approach.

Table 12. Macroeconomic Panel Regressions: PCs

Yt,t+h,J (1) Πt−1,t,1 (2) (t-statistic) (3) Πt−1,t,2 (4) (t-statistic) (5) R2 (%)

One quarter ahead (h � 1)
ΔGDP −0.00187 (−1.49) 0.00210 (1.01) 4.79
ΔOutputGap −0.00183∗ (−1.71) 0.00189 (1.09) 4.85
ΔConsumption −0.00131 (−1.41) 0.00141 (1.21) 11.94
ΔCapitalFormation −0.00527 (−1.31) 0.00390 (0.76) 3.64
ΔIndProduction −0.00541∗ (−1.75) 0.00511 (0.83) 8.63
ΔManufacturing −0.00648∗ (−1.66) 0.00560 (0.77) 7.64
ΔConstruction −0.00467 (−1.46) 0.00374 (0.93) 3.59
ΔUnemployment 0.00876 (1.16) −0.00769 (−0.76) 11.74
ΔOvernightRate −0.02542 (−0.21) 0.18245 (1.52) 2.79
ΔLongTermRate −0.11646∗ (−1.67) 0.12785∗∗ (2.02) 10.72

Two quarters ahead (h � 2)
ΔGDP −0.00390∗∗ (−2.26) 0.00343 (1.10) 6.25
ΔOutputGap −0.00380∗∗∗ (−3.03) 0.00341 (1.32) 8.24
ΔConsumption −0.00259∗∗ (−2.32) 0.00160 (1.07) 12.97
ΔCapitalFormation −0.01425∗∗∗ (−2.67) 0.00622 (0.76) 7.49
ΔIndProduction −0.01039∗∗ (−2.44) 0.00988 (1.04) 7.77
ΔManufacturing −0.01264∗∗ (−2.34) 0.01173 (1.05) 8.79
ΔConstruction −0.00829∗ (−1.88) 0.00389 (0.56) 6.17
ΔUnemployment 0.01959∗ (1.86) −0.01781 (−1.09) 14.48
ΔOvernightRate −0.19167 (−1.53) 0.23971 (1.62) 2.63
ΔLongTermRate −0.14375∗ (−1.85) 0.20071∗∗ (2.29) 11.23

Three quarters ahead (h � 3)
ΔGDP −0.00618∗∗∗ (−3.25) 0.00295 (1.03) 6.18
ΔOutputGap −0.00501∗∗∗ (−3.62) 0.00294 (1.24) 10.14
ΔConsumption −0.00462∗∗∗ (−3.35) 0.00125 (0.85) 15.10
ΔCapitalFormation −0.02097∗∗∗ (−3.59) 0.00663 (0.82) 9.21
ΔIndProduction −0.01409∗∗∗ (−3.08) 0.00775 (0.91) 6.70
ΔManufacturing −0.01713∗∗∗ (−3.04) 0.00978 (0.98) 7.68
ΔConstruction −0.01208∗∗ (−2.48) 0.00413 (0.59) 7.48
ΔUnemployment 0.03398∗∗∗ (3.10) −0.01676 (−0.99) 12.83
ΔOvernightRate −0.23713 (−1.52) 0.21221 (1.43) 2.77
ΔLongTermRate −0.13554 (−1.45) 0.16768 (1.37) 9.89

Four quarters ahead (h � 4)
ΔGDP −0.00771∗∗∗ (−3.12) 0.00272 (0.86) 5.77
ΔOutputGap −0.00640∗∗∗ (−3.63) 0.00282 (1.07) 11.60
ΔConsumption −0.00478∗∗∗ (−2.83) 0.00115 (0.70) 14.84
ΔCapitalFormation −0.02216∗∗∗ (−2.96) 0.00684 (0.83) 8.34
ΔIndProduction −0.01691∗∗∗ (−2.85) 0.00609 (0.66) 5.90
ΔManufacturing −0.01996∗∗∗ (−2.67) 0.00695 (0.65) 6.62
ΔConstruction −0.01451∗∗ (−2.31) 0.00417 (0.57) 7.51
ΔUnemployment 0.05070∗∗∗ (3.47) −0.01487 (−0.87) 12.14
ΔOvernightRate −0.39396∗ (−1.92) 0.14097 (0.91) 3.73
ΔLongTermRate −0.18872∗∗ (−2.01) 0.08231 (0.63) 7.95

Notes. Quarterly within-panel regressions Yt,t+h,J � cJ +∑2
K�1θKΠt−1,t,K + ϑ((EXt,J/US − EXt−1,J/US)/EXt−1,J/US) +∑4

k�1δkYt−k,t−k+1,J + εt,t+h,J , where
Yt,t+h,J is the change or growth of a macroeconomic quantity in country J over h quarters from t to t + h, cJ is a country-specific constant,Πt−1,t,K is
the change in PC K over quarter t − 1 to t, (EXt,J/US − EXt−1,J/US)/EXt−1,J/US is the exchange rate growth over quarter t − 1 to t, Yt−k,t−k+1,J are past
realizations of the macroeconomic quantity that captures the persistence in YJ , εt,t+h,J is the regression error. Columns (1) and (3) report the slope
coefficient estimates θ1 and θ2, (2) and (4) the t-statistics of θ1 and θ2, and (5) the regression R2 in percentage points. Errors are clustered within
time and adjusted for overlapping observations according to Hodrick (1992).

*10%, **5%, and ***1% significance of the slope coefficients.
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The first PC Πt,1 of exchange rate growths is strongly
associated with a broad set of fundamentals and seems
to capture economic growth at a horizon of two to four
quarters. The second PC Πt,2 is related to short-term
changes in the long-term interest rate.

5. Conclusion
We use PCA on 55 bilateral exchange rates of 11 de-
veloped currencies to identify two major risk sources
in FX markets. Including all bilateral exchange rates
is important because it focuses the PCA on global
risks. In contrast, if only exchange rates quoted against
some base currency (e.g., the USD) are used, then the
PCA is biased toward risks specific to the base cur-
rency, even though such risks may not necessarily be
important from a global or other countries’ perspec-
tive. We find that our identified risk sources (i.e., first
two PCs of all bilateral exchange rate growths) have
some overlap with the Carry and Dollar factors, but
the relation to the Dollar is weaker. We use a cross-
sectional regression of FX returns to estimate market
prices of our risk sources and construct FX market-
implied country-specific SDFs. We show that cur-
rencies with lower interest rates have more volatile
SDFs, and the carry trade of borrowing currencies with
more volatile SDFs and lending currencies with less
volatile SDFs is profitable. Furthermore, we decompose
our SDFs into permanent and transitory components
and show that the theoretical bounds of Alvarez and
Jermann (2005) are generally satisfied. We further
document that model-implied long-term bond yields
line up well with yields observed in the data. In ad-
dition, the theoretical relationship derived by Lustig
et al. (2017) between long-term bond excess returns
and entropies of permanent SDF components across
countries holds in our estimated model. Moreover, we
show that our FX market-implied SDFs are able to
price international stock returns and are related to
important financial stress indicators and macroeco-
nomic fundamentals. Finally, we find that the second
PC is more important to price risks in both FX and
stock markets than the first PC, but the first PC is more
strongly associated with a broad set of macroeconomic
fundamentals than the second PC. Moreover, the first
PC is associated with the TED spread and quantities
that capture current volatility, tail risk, and contagion
risk, as well as future economic growth. In contrast, the
second PC is associated with the default and term
spreads and variables measuring volatility and il-
liquidity. The second PC is mostly unrelated to future
economic growth but has a significant association
with short-term changes in the long-term interest rate.
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Endnotes
1Lustig et al. (2011) define the Dollar as the strategy of borrowing in
USD and equally lending in all other currencies, and the Carry as
borrowing in low and lending in high interest rate currencies.
2Note that forN + 1 currencies onlyN out of all (N(N − 1))/2 bilateral
exchange rates are linearly independent. Thus, PCA delivers only N
PCs with nonzero eigenvalues. These N PCs span the same space as
the N PCs of N exchange rates quoted against a single base currency
(e.g., USD); but in general, the first K<N PCs of all (N(N − 1))/2
bilateral exchange rates will not span the same space as the first K PCs
of the N exchange rates quoted against a single base currency.
3Yet another body of literature uses option prices to quantify risks of
currency crashes and peso events and explain carry trade returns
(e.g., Brunnermeier et al. 2008, Burnside et al. 2011, Chernov et al.
2013, Farhi et al. 2014, and Jurek 2014; see Chernov et al. 2013 for
a comprehensive literature review on exchange rate crash risks).
We focus on diffusion risks in our analysis.
4We provide empirical evidence to justify this stationarity assump-
tion in Section A in the online appendix.
5 Such a replacement is fully adequate as long as risks are not
entangled in FX markets; see Maurer and Tran (2017a).
6 In matrix notation n× 1 diffusion innovation vector dZt is the t-th
row of matrix dZ, and n× 1 differential price of risk vector ΔηC/D ≡
ηC − ηD is the C/D-th column of matrix Δη.
7To see this, note that relationships in (4) imply ΠW̄

T �
ΠDiag[ ̅̅̅̅

λ1
√

; . . . ;
̅̅̅̅
λP

√ ]WT � ΠWT � X. As noted below (3), because
innovations in exchange rate growths X (2) equal innovations in
realized carry trade returns (3), the previous identity ΠW̄

T � X
implies CTI

t+dt,−B/+L � ∑
Πt,KW̄B/L,K for all currency pairs B/L∈3.

Then indeed, W̄B/L,K is the loading of the carry trade return
CTI

t+dt,−B/+L on the Kth principal components Πt,K .
8Condition (i) implies that the residual risks are canceled and do not
affect exchange rate fluctuations. Condition (ii) implies that expected
carry trade returns have no information to estimate the residual risks.
9There are several recent papers that discuss the possibility of ar-
bitrage due to a failure in the covered interest rate parity (CIP) in the
last decade (Borio et al. 2016, Rime et al. 2016, Du et al. 2018). Overall,
these papers suggest that possible (if any) arbitrage opportunities are
small and only accessible by very few large financial institutions.
10Complete risk disentanglement is a sufficient and necessary con-
dition for the equality between exchange rates and ratios of (pro-
jected) country-specific SDFs to hold (Maurer and Tran 2017a, b).
11 Section B in the online appendix provides the values of ER(k)
and GR(k)∀k ∈ {1, . . . , kmax}.
12Note that the two PCs Πt,1 and Πt,2 are denominated in USD.
However, for the initial construction we have used all bilateral ex-
change rates in the PCA, which we argue shifts the focus away from
the USD and more to globally important risks.
13 In light of Gavazzoni et al. (2013), we can conclude that our estimated
SDFs do not fit into the parametric restrictions imposed on their affine
risk setting. For instance, it is important in Gavazzoni et al. (2013) that
interest rate volatilities sort monotonically with SDF volatilities in the
cross section—which relies on the affine setting and parametric as-
sumptions in their paper. Our procedure aims to estimate SDF vola-
tilities from asset prices andmakes no assumption on the pattern of the
cross-sectional variation of interest rate volatilities a priori.
14Verdelhan (2010) uses the definition of the interest rate in currency
Jrt,J � −lnEt[Mt+1,J] � −Et[mt+1,J] − 1

2Vart[mt+1,J] with SDF Mt+1,J and
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log-SDF mt+1,J � lnMt+1,J and defines exchange rate growths as the
differences in log-SDFs. The expected log carry trade return is
E[lnCTt+dt,−I/+J] � rt,J − rt,I + Et[mt+1,J] − Et[mt+1,I] � 1

2Vart[mt+1,I] −
1
2Vart[mt+1,J].
15Note that we are plotting levels ln(M̂t,J), not the growths
dM̂t,J
M̂t,J

≈ ln(M̂t+dt,J) − ln(M̂t,J).
16We provide details on the (non)stationarity of SDFs and their
growths in Section C in the online appendix.
17 If markets are fully integrated and free of arbitrage, Maurer and
Tran (2017a, b) prove that the ratio of projected country-specific SDFs
is always equal to the exchange rate in a diffusion setting (as con-
sidered in our paper). They further prove that risk entanglement in FX
markets is a necessary and sufficient condition to break this strong
relation and possibly allow for a low correlation between projected
SDFs while still ensuring a smooth exchange rate process.
18Entropy is a risk measure, and if x is log-normally distributed then
L(x) � 1

2 Var(x).
19Note that we compute the unconditional version of (13), which is
less tight than the theoretical conditional bound that has to hold at
every point in time.
20The constant term in the regression is 0.029 and significantly different
from 0.
21Note that adding the carry trade premium to the expected log
excess return of the long-term bond denominated in local currency
changes the denomination to USD.
22Note that if the hypothesis that E[rxUS

t+dt,∞,J] � E[rxt+dt,∞,US]was true
and differences in average excess returns of 10-year bonds are just
noise, then we should not find any significant relationship in our
regression. We deem it unlikely that the noise in average excess
returns is correlated with the differences in entropies of the permanent
components because our estimated SDFs and the constructed per-
manent components do not use any long-term bond data.
23This roughly corresponds to daily, weekly, biweekly, monthly,
quarterly, and semi-annual returns.
24http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data
_library.html.
25This test of estimating themarket prices of risk of the U.S. SDF M̂t,US

can be understood similarly to tests of the market portfolio when
testing the CAPM.
26To save spacewe only report the results for the 22market portfolios.
Tables for all other 198 portfolios are available upon request.
27We have also tested Financial Condition Indices from the St. Louis
Federal Reserve Bank and Kansas City Federal Reserve Bank, and the
results are almost the same.We do not report these estimates for brevity.
28VIX data are only available starting in January 1990.
29The FX illiquidity data are only available starting in January 1991.
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