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A large empirical literature extends the seminal carry (CAR) factor analysis
of Lustig and Verdelhan (2007) and Lustig, Roussanov, and Verdelhan
(2011) and uncovers various currency portfolios with average returns that
cannot be explained by the CAR factor. Going beyond interest-rate-sorted
portfolios, the test assets commonly studied in the literature are
characteristic-sorted portfolios based on momentum, value, dollar beta,
FX correlations, and volatility-managed and mean-variance-optimized cur-
rency portfolios. We investigate whether we need additional pricing factors,
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such as momentum, value, dollar beta, FX correlation dispersion, volatility,
illiquidity, skewness, downside risk, or financial intermediary, or factors
containing other information to price the aforementioned broad set of test
assets. However, we find that simple adjustments to CAR are sufficient, and
we do not need additional pricing factors.
Guided by a mean-variance optimization (or, equivalently, the construc-

tion of the minimum variance stochastic discount factor), we find that the
covariance matrix of exchange rate growths and forward discounts have
important information for pricing. We denote our factor as the covariance
and spread (or forward discount) adjusted carry (CSCAR) factor. We show
that CSCAR as a single pricing factor explains the cross-section of average
returns, and it subsumes the relevant information of other factors.
First, we find thatCSCAR is priced in the cross-section and has a large and

significant risk premium. Second, the implied risk premium is not statistically
significantly different from the average return of CSCAR, which is an im-
portant validation test for a traded factor.
Third, there is no evidence of mispricing, and the abnormal returns of all

test assets are not jointly significantly different from zero, both in the cross-
sectional and in time-series pricing equations. Fourth, the model fit (R2) of
the cross-sectional pricing equation is large. Fifth, and finally, both compo-
nents of CSCAR, namely, the conditional exchange rate correlations and
forward discounts, are time varying and forecast future realized currency
returns.
Carry factors, which do not use all the information of the covariance ma-

trix and forward discounts, do not price assets adequately. In particular, the
following three variants do not explain the cross-section of average returns:
(a) a spread-adjusted carry, which ignores the information of the covariance
matrix, (b) a covariance-adjusted carry, which does not properly account for
the size of forward discounts, or (c) a volatility-managed carry factor (in the
spirit of Fleming, Kirby, and Ostdiek 2001; Moreira and Muir 2016), which
ignores the information of the correlation matrix. Popular single- and mul-
tifactor models, which incorporate CAR, dollar carry, momentum, value,
illiquidity, skewness, downside risk, and intermediary asset pricing factors,
do not span theCSCAR factor and are rejected in our tests.We conclude that
accounting for both the covariance matrix (i.e., variances and correlations of
exchange rate growths) and forward discounts is important for pricing, and
well-known factors in the literature do not capture this pricing information.
We document that the conditional covariance matrix of exchange rate

growths and forward discounts vary through time, andCSCAR dynamically
adjusts its risk exposure (measured by its notional value or leverage) in re-
sponse to this variation. It is important to properly account for this time-
series variation. We construct a variant of CSCAR, which keeps its risk
exposure constant through time, and show that this variant is rejected in
our tests.
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Finally, if the conditional covariance matrix and forward discounts are
important determinants of conditional expected returns and if they vary
through time, then FX market returns should be predictable. We verify
this hypothesis and show that the notional value, leverage and turnover of
CSCAR (which capture changes in the conditional covariance matrix of ex-
change rate growths and forward discounts) forecast FX market returns,
volatility, and illiquidity 1 to 18 months ahead.
CSCAR is the return of the portfolio withweights hCSCARt ¼ X�1t fdt, where

the ith element hCSCARi;t is the portfolio weight placed on the position in cur-
rency i against the USD; Xt is the conditional covariance matrix of exchange
rate growths; and fdt a vector of forward discounts at time t (see the details in
Section 1). If the forward discount fdi;t is a proxy for the conditional expected
excess return of the position in currency i against the USD, then CSCAR is
the return of amean-variance efficient currency portfolio or the inverse of the
minimum-variance stochastic discount factor in FX markets. Although this
interpretation of CSCAR is appealing, our empirical tests and results do not
rely on the assumption that forward discounts are proxies for conditional
expected excess returns or the assumption that investors only care about the
first two moments of the return distribution. We do not take a stance on the
underlying model. We provide new evidence that the covariance matrix of
exchange rate growths and forward discounts have important information
for pricing assets in FX markets.
We are not the first to construct mean-variance efficient currency portfo-

lios. In that sense, our covariance and spread adjustments are not new.
However, the related literature focuses on the profitability of trading strate-
gies and documents that mean-variance optimized portfolios in FX markets
generate large out-of-sample returns (Baz et al. 2001;Della Corte, Sarno, and
Tsiakas 2009; Ackermann, Pohl, and Schmedders 2016; Daniel, Hodrick,
and Lu 2014; Maurer, To, and Tran 2020). In contrast, our paper studies
the ability to price the cross-section of average returns in FX markets. We
identify the importance of an efficient combination of the first two moments
of FX returns to construct a single-factor model that prices the cross-section
of a large set of FX securities.Market timing as discussed byMaurer, To, and
Tran (2020) is a crucial component for themodel to succeed in unconditional
tests. In addition, other papers have studied correlation risk or spread adjust-
ments (Hassan and Mano 2019; Mueller, Stathopoulos, and Vedolin
2017; Verdelhan 2018). However, we show that both adjustments are needed,
and they have to be incorporated in a specific manner for the factor pricing
model to succeed.
Our findings have important implications for theoretical models and em-

pirical research.Many theoretical models focus on forward discounts and do
not analyze how variances and correlations influence exchange rate growths.
Our findings suggest that the exchange rate growth variances and correla-
tions contain important information for pricing and should be relevant in
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economicmodels.We also document a substantial time-series variation in the
conditional covariance matrix of exchange rate growths and forward dis-
counts, and accounting for this variation is a critical step in pricing assets.
Future empirical research should investigate the underlying economic funda-
mentals that drive this time-series variation. We study the CSCAR factor in
the model of Mueller, Stathopoulos, and Vedolin (2017) and show how it
differs from their FX correlation risk factor.
Our paper is related to that of Bekaert and Panayotov (2020), who doc-

ument that, among G-10 currencies, traditional carry trades (labeled as “bad
carries”), which involve prototypical currencies with the highest and lowest
interest rates (i.e., AUD, JPY, and CHF), offer substantially lower Sharpe
ratios and high negative skewness compared to other currencies (labeled as
“good carries”) with less extreme interest rates. Their study questions the role
of return skewness and crash risk in rationalizing the performance of tradi-
tional carry trades based on interest rate differentials. Our paper concurswith
this finding in that our CSCAR factor has a positive skewness and high
Sharpe ratio. CSCAR differs from good carry trades of Bekaert and
Panayotov (2020) along three aspects; namely, CSCAR does not preclude
prototypical currencies, its portfolio composition is time varying, and it fea-
tures market timing (quantified by its time-varying notional value). That is,
CSCAR integrates prototypical currencies back into the set of admissible
currencies, while it efficiently trades off exchange rate covariances (i.e.,
risk) and forward spreads (i.e., expected rewards) to pin down the priced
risks in FX markets.
Daniel, Hodrick, and Lu (2014) also examine different carry trade strat-

egies: spread-weighted (or varying portfolio weights with interest rate differ-
entials), risk-balanced (or controlling for the volatility of strategy returns),
mean-variance efficient with fixed notional values, and dollar carry. They
show that while spread-weighting, risk-balancing, and mean-variance opti-
mization improve the performance of carry trades, the most remarkable im-
provement is with the dollar carry strategy. Our results not only reinforce
these findings on the improvement of the carry trade performance but also
demonstrate the enhancing effect of combining spread weighting, risk bal-
ancing, and mean-variance efficiency without rigidly fixing notional values.
As a result, CSCAR significantly outperforms the dollar carry in both meas-
ures of profitability and risk pricing.
Hassan and Mano (2019) decompose currency returns into a cross-

currency, a between-time-and-currency, and a cross-time component. They
explain the differences between the forward premium puzzle and the dollar
trade versus the carry trade. Our CSCAR factor builds on this and demon-
strates that both the portfolio composition in a specificmonth and themarket
timing across months (i.e., the time variation in the notional value) are im-
portant to price FX market risks.
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Mueller, Stathopoulos, andVedolin (2017) introduce amodel and a factor
to study the pricing implications of FX correlation risk. Verdelhan (2018)
further introduces a model of systematic dollar risk exposure, which also
captures correlations. We show that the CSCAR factor has information be-
yond the FX correlation factor in the model of Mueller, Stathopoulos, and
Vedolin (2017). Moreover, in the data CSCAR is able to explain a large
cross-section of FX returns, while several tests reject the factor models of
Mueller, Stathopoulos, and Vedolin (2017) and Verdelhan (2018).
Our paper is also related to the empirical literature that analyzes various

pricing factors in FX markets: carry factor (Lustig and Verdelhan
2007; Lustig, Roussanov, and Verdelhan 2011), global volatility factor
(Menkhoff et al. 2012; Christiansen, Ranaldo, and Söderlind 2011), momen-
tum factor (Burnside, Eichenbaum, and Rebelo 2011; Menkhoff et al. 2012),
global currency skewness factor (Rafferty, 2012), dollar factor (Lustig,
Roussanov, and Verdelhan, 2014), downside beta risk factor
(Dobrynskaya, 2014; Lettau, Maggiori, and Weber 2014; Galsband and
Nitschka 2013), FX liquidity risk factor (Mancini, Ranaldo, and
Wrampelmeyer 2013), economic size factor (Hassan, 2013), economic mo-
mentum (Dahlquist and Hasseltoft 2020), and surplus-consumption risk fac-
tor (Riddiough and Sarno 2020). We show that the covariance matrix and
forward discounts contain important information about pricing not captured
by the popular factors in the literature.

1. Currency Returns and Data

We denote spot and 1-month forward exchange rates as USD per unit of
currency i at time t by Xi;t and Fi;t. Following the literature, we define the 1-
month realized currency return between currency i and the USD (denomi-
nated inUSD) byCTi;tþ1 ¼ ln

Xi;tþ1
Fi;t

� �
. This is the return of an uncovered long

position in the forward exchange rate contract of currency i against theUSD.

We can decompose this into the forward discount fdi;t ¼ ln
Xi;t

Fi;t

� �
(known at

time t) and the exchange rate growth Dxi;tþ1 ¼ ln
Xi;tþ1
Xi;t

� �
(realized at time tþ

1), CTi;tþ1 ¼ fdi;t þ Dxi;tþ1.
1

We build currency portfolios for our test assets and traded factors as
follows. Let hi;t be the portfolio weight at time t on the currency return
CTi;tþ1; that is, jjhi;tjj indicates the dollar amount perUSDofwealth invested
in a long (if hi;t > 0) or short (if hi;t < 0) position in the uncovered forward

1 Under the premise of the covered interest rate parity (CIP), that is, the forward discount is equal to the interest

rate differential fdi;t ¼ ln
Ri;t

RUS;t

� �
where RUS;t and Ri;t are 1-month risk-free interest rates in the USD and

currency i, the currency return is equivalent to borrow 1
RUS;t

USD and lend 1
RUS;tXi;t

units of currency i. We do

not require theCIP to hold for the construction of our factors and test assets.We implement all currency returns
using forward and spot exchange rates and do not need information about interest rates.
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exchange rate contract in currency i against the USD. ht is anN� 1 column
vector containing hi;t for all currencies i, where N denotes the number of
exchange rates against the USD in our sample. Because of fluctuating data
availability, the number of currencies N changes through time. To simplify
the notation, we drop the time subscript forN. Since currency returns are net-
zero investments (i.e., excess returns), the portfolio weights do not need to
sum to one.We define

P
i jjhi;tjj as portfolio ht’s notional value or total dollar

exposure per dollar of wealth. Furthermore,
P

i hi;t is the leverage or net-
dollar position in all risky currency returns per dollar of wealth. Large (small)
notional value and leverage indicate that the strategy is aggressive (conser-
vative) and has a large (small) risk exposure. The realized excess return (over
the risk-free rate in USD) of the portfolio is

P
i hi;tCTi;tþ1.

We collect daily spot and 1-month forward exchange rates from Barclays
Bank International and Reuters via Datastream. We use quotes of the last
day of the month to compute monthly currency returns CTi;tþ1. Potential
concerns of currencies of emerging countries are capital controls and major
trading frictions. Menkhoff et al. (2012) and Della Corte, Ramadorai, and
Sarno (2016) suggest excluding countries with a negative score on the capital
account openness index of Chinn and Ito (2006). Following this literature,
we use 29 exchange rates against the USD from January 1984 to February
2016. We follow Lustig, Roussanov, and Verdelhan (2011) and split our
sample into 15 developed and 14 emerging countries. The 15 developed
countries are Australia, Belgium, Canada, Denmark, euro area, France,
Germany, Italy, Japan, Netherlands, New Zealand, Norway, Sweden,
Switzerland, and the United Kingdom. The 14 emerging countries are
Brazil, Czech Republic, Greece, Hungary, Iceland, Ireland, Mexico,
Poland, Portugal, Singapore, South Africa, South Korea, Spain, and
Taiwan. The euro was introduced in January 1999, and we exclude all coun-
tries that have joined the euro after that and only keep the euro as a currency.
Except for the empirical results concerning the CSCAR factor pricing anal-
ysis, results pertaining to the set of 29 exchange rates against the USD are
relegated to the Internet Appendix.
Besides selecting currencies according to the capital account openness in-

dex of Chinn and Ito (2006), we apply the following filters to remove indi-
vidual currency-month observations, which are likely to be subject to major
trading frictions, market segmentation or feature a substantial default risk in
the short-term sovereign bond market. All filters use information known ex
ante without introducing bias. First, we exclude a currency in month t if the
absolute value of the annualized forward discount 12� jfdi;tj is larger than
20%. Forward discounts of more than 20% are rare and we believe that such
large values likely indicate the presence of severe trading frictions, sizable
sovereign default risk or an extraordinary large currency devaluation.
Second, we remove a currency in month t if the relative bid-ask spread of
either the forward or spot exchange rate (i.e., the monthly trading cost) is
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larger than 1%. These filters remove only 0.4% (1.7%) of currency-month
observations in our sample of 15 (29) countries between January 1984 and
February 2016.

2. Pricing Factors

We first describe the well-known high minus low forward discount carry
trade factor of Lustig, Roussanov, and Verdelhan (2011). Then, we intro-
duce two simple adjustments to take into account the size of forward dis-
counts and the covariation between exchange rates. We show that these
adjustments are important to enhance the carry factor and enable it to fully
capture the cross-section of average returns of a broad set of currency port-
folios. We further introduce and test several additional factors that are
contenders.

2.1 Covariance- and spread-adjusted carries

CAR: Lustig, Roussanov, and Verdelhan (2011) introduce an equally
weighted Carry (CAR) factor. On the last day of every month t, we sort
currencies according to the current forward discount fdi;t, and for each quin-
tile k 2 f1; . . . ; 5g we construct an equally weighted portfolio fdPk of cur-
rency returnsCTi;tþ1 for all currencies i in quintile k. TheCAR factor takes a
long position in the high forward discount portfolio fdP5 and a short position
in the low forward discount portfolio fdP1.CAR is well-known to explain the
cross-section of average returns of forward-discount-sorted portfolios.
However, it does not capture the cross-sectional variation of average returns
of other currency portfolios. To address this shortcoming, we enhance the
carry factor by taking into account the size and time variation in the forward
discounts and the covariation of exchange rates. That is, we construct a
Covariance- and Spread-adjusted Carry (CSCAR) factor.
SCAR:Wedefine the Spread-adjustedCarry (SCAR) factor as the realized

portfolio excess return
P

i h
SCAR
i;t CTi;tþ1 with

hSCARt ¼ fdt;

where fdt is a column vector containing the forward discounts fdi;t for all N
exchange rates i. The spread adjustment has implications on the portfolio
composition at time t and on the time variation in the notional valueP

i jjh
SCAR
i;t jj. CAR ranks currencies according to the forward discount and

equallyweights top- and bottom-ranked currencies, whereasSCAR hasmore
fine-tuned weights and a currency with a large (small) forward discount
receives a proportionally large (small) weight. Moreover, forward discounts
change through time and if the sum of absolute forward discounts

P
i jjfdi;tjj

is large (small), then the notional value ofSCAR is large (small). Thus,SCAR
is dynamic and times the market based on the absolute size of the forward
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discounts. In contrast,CAR has a constant notional value through time, that
is, no market timing.
CSCAR: CSCAR adjusts SCAR using information (available at time t)

about the covariation between exchange rate growths. We normalize the
portfolio weights of SCAR by the conditional covariance matrix,

hCSCARt ¼ ~X
�1
t hSCARt ¼ ~X

�1
t fdt;

where ~X
�1
t is a robust version of the inverse of the conditional covariance

matrix Xt of all exchange rate growths. Similar to SCAR, CSCAR is dy-
namic, and its notional value varies through time. However,

P
i jjh

CSCAR
i;t jj

not only depends on the absolute size of the forward discounts but also takes
into account changes in covariances. Thus, it is a covariance managed port-
folio. In particular, CSCAR invests more aggressively in FX markets when
forward discounts are large (in absolute size) and the (co)variation in ex-
change rate growths is low.
CSCAR is equivalent to a mean-variance efficient portfolio or the inverse

of the minimum variance stochastic discount factor (SDF) in FX markets
(Hansen and Jagannathan, 1991), if we assume that the forward discount fdi;t
is a proxy for the conditional expected excess return of CTi;tþ1. Such an
assumption can be motivated by the fact that exchange rate changes D
xi;tþ1 are difficult to predict (Meese and Rogoff 1983). Baz et al. (2001),
Della Corte, Sarno, and Tsiakas (2009), Ackermann, Pohl, and
Schmedders (2016), Daniel, Hodrick, and Lu (2014), and Maurer, To,
and Tran (2020) analyze the performance of mean-variance efficient trading
strategies similar to CSCAR, but none of these papers investigates the per-
formance of a mean-variance efficient strategy as a pricing factor. Under this
interpretation, the notional value of CSCAR is large and the factor invests
aggressively when the conditional Sharpe ratio and the conditional variance
of the minimum variance SDF are large (i.e., forward discounts are large and
covariances small), and the factor invests conservativelywhen the conditional
Sharpe ratio and the conditional variance of the minimum variance SDF are
small. We revisit this market timing property of CSCAR in Section 3.7 and
show that CSCAR is able to forecast FX market returns, volatility and
illiquidity.
We use an exponentially weighted moving average (EWMA) of squared,

demeaned daily exchange rate growths over the past 6months to estimate the
monthly conditional covariance matrix Xt. Element (i, j) of Xt is

CovtðCTi;tþ1;CTj;tþ1Þ ¼ CovtðDxi;tþ1;Dxj;tþ1Þ ¼ Tt

6

PTt
s¼1

dTt�sðDxd;i;s� �Dxd;i;sÞðDxd;j;s� �Dxd;j;sÞPTt
s¼1

dTt�s

, where D

xd;i;s is the daily exchange rate growth of currency i against the USD on

day s in the 6-month period preceding the last day of month t, �Dxd;i;s ¼ 1
Tt
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PTt

h¼1
Dxd;i;h is the sample average of the daily exchange rate growthDxd;i;s over

the past 6 months,Tt is the number of trading days within the past 6 months,
and EWMA weight d ¼ 0:95. The EWMA weight of 0.95 implies a half-life
of an exchange rate growth observation of 14 trading days. Our results are
robust to various choices of the window length and the EWMA weight.2

To obtain a robust version of the inverse of the covariance matrix, we first
diagonalize Xt ¼WtKtW

0
t, whereWt is theN� N rotation matrix (whoseN

columns are theN� 1 eigenvectors) and Kt theN� N diagonal matrix with
the eigenvalues ki;t for i 2 f1; . . . ;Ng on its diagonal. We then remove ei-
genvalue kk;t (i.e., row and column k ofKt) and its corresponding eigenvector

(i.e., column k of Wt) if
kk;tPN

h¼1
kh;t

< 1%. We denote the new matrices after

removingK small eigenvalues and corresponding eigenvectors by the ðN� K

Þ � ðN� KÞ diagonal matrix ~Kt and the N� ðN� KÞ rotation matrix ~Wt,

and define ~X
�1
t ¼ ~Wt

~K
�1
t

~W
0
t. This procedure reduces estimation errors in the

covariance matrix and provides us with a robust version of the inverse of the
covariance matrix. Our approach is equivalent to a principal component
analysis and building a factor model with theN –K largest principal compo-
nents (where each component explains 1% ormore of the common variation
in exchange rate growths). Removing principal components that explain only
a small fraction of the exchange rate variation helps us to avoid in-sample
overfitting and near-arbitrage opportunities, that is, factors with an unrea-
sonably large in-sample Sharpe ratio (Ross 1976;Kozak, Nagel, and Santosh
2018).

2.2 Other pricing factors

DOL, DDOL: The dollar (DOL) is a traded factor that invests equally in all
currencies (Lustig, Roussanov, and Verdelhan 2011), that is, hDOLi;t ¼ 1

N. The
Dollar Carry (DDOL) takes a long (short) position in the DOL when the
median forward discount across all exchange rates is positive (negative)
(Lustig, Roussanov, and Verdelhan 2014),
hDDOLt ¼ signðmedianðffdj;tgNj¼1ÞÞh

DOL
t .

MOM: Momentum (MOM) portfolios in FX markets are analyzed by
Burnside, Eichenbaum, and Rebelo (2011) and Menkhoff et al. (2012). On
the last day of every month t we compute for each currency i the average
monthly currency return over the past 12 months. We then sort currencies
according to the past performance into quintiles (the top quintile contains the

2 We have tested window lengths between 3 and 12 months and EWMA weights between 0.9 and 1, and our
findings remain essentially unchanged.
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winner currencies and the bottom quintile the loser currencies) and build
equally weighted currency portfolios for each quintile. We denote these five
portfolios by MomPi, 8i 2 f1; . . . ; 5g. MOM takes a long position in the
winner currency portfolioMomP5 and a short position in the loser currency
portfolio MomP1. In our sample at time t, we use only currencies for which
we can observe all returns over the past 12 months.

VAL: The value (VAL) strategy assumes that in the long run undervalued
currencies with low real exchange rates appreciate against overvalued cur-
rencies with high real exchange rates (Bilson , 1984). On the last day of every
month t we sort currencies according to their real exchange rates against the
USD into quintiles, where the top quintile contains overvalued and the bot-
tom quintile undervalued currencies. The real exchange rate of currency i
against USD is equal to the purchasing power parity (PPP) at time t (quoted
as currency i perUSDof a representative consumption bundle) multiplied by
nominal exchange rate Xi;t. Our value portfolios do not use macroeconomic
information to remove the effect of the expected real interest rate differential
and the long-run expected real exchange rate from the real exchange rate as in
Menkhoff et al. (2017). We construct equally weighted currency portfolios
for each quintile, denoted by ValPi, 8i 2 f1; . . . ; 5g. VAL takes a long posi-
tion in the portfolio of undervalued currencies,ValP1, and a short position in
the portfolio of overvalued currencies,ValP5. Finally, our construction of the
value portfolios differs from that ofAsness,Moskowitz, and Pedersen (2013)
orMenkhoff et al. (2017), who use 5-year changes in PPP as a signal.We find
that our overall conclusions are unaffected whether we use the current or 5-
year changes in PPP.3 However, our approach to construct value portfolios
has the advantage that we have more data as we do not need 5 years of past
data. The 5-year time lag means that our overall sample not only is 5 years
shorter but also is problematic when new currencies enter the sample.

NSCAR,SCARCV:TheNormalized-Spread-adjustedCarry (NSCAR) factor
is a normalized version of SCAR that keeps the notional value constant, and
thus, it has no market timing (Daniel, Hodrick, and Lu, 2014),

hNSCARt ¼ hSCARtP
j
jjhSCARj;t jj ¼

fdtP
j
jjfdj;tjj

. Although NSCAR has a constant notional

value, its conditional variance is still time varying because FX market vola-
tility is changing through time. SCARCV adjusts SCAR to keep the condi-
tional volatility constant equal to r through time,

hSCARCV
t ¼ r hSCARtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhSCARt Þ0 ~Xth
SCAR
t

p ¼ r fdtffiffiffiffiffiffiffiffiffiffiffiffi
fd0t

~X tfdt
p and where ~Xt ¼ ~Wt

~Kt
~W
0
t.

3 The robustness results are available on request.
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CARVM, NSCARVM, VSCAR:We construct volatility-managed versions of
CAR and NSCAR according to Fleming, Kirby, and Ostdiek (2001) and
Moreira andMuir (2016).We compute the conditional variance ofCAR and
NSCAR denoted by rCAR

t and rNSCAR
t using daily returns of these factors

over the past month and define the volatility-managed factors as hCARVM
t ¼

hCARt

ðrCAR
t Þ2 and hNSCARVM

t ¼ hNSCARt

ðrNSCAR
t Þ2. The Variance- and Spread-adjusted Carry

(VSCAR) factor is amore sophisticated version of a volatility-managed carry

factor and adjusts SCAR by normalizing the portfolio weight hSCARi;t by the

variance of exchange rate i, hVSCARt ¼ D�1t hSCARt ¼ D�1t fdt, where D
�1
t is a

diagonal matrix equal to the diagonal of ~X
�1
t . In other words, VSCAR is

similar toCSCAR but ignores (sets to zero) all correlations between exchange
rate growths. The advantage of VSCAR is that fewer parameters have to be
estimated; this advantage reduces estimation errors. The disadvantage is the
loss of important information about correlations.

CECAR: The Covariance-adjusted Equally weighted Carry (CECAR) factor
follows the CSCAR factor to make a covariance adjustment, but it does not
fully account for the size of the forward discounts, hCECARt ¼ ~X

�1
t signðfdtÞ.

CSCARCR, CSCARCV, CSCARfull: CSCARCR normalizes CSCAR at every
point in time so that its notional value is constant through time:

hCSCARCR ¼ hCSCARtP
j
jjhCSCARj;t jj. Ackermann, Pohl, and Schmedders (2016) and

Daniel, Hodrick, and Lu (2014) show that this portfolio earns a large
Sharpe ratio but they donot consider the properties ofCSCARCR as a pricing
factor.CSCARCV adjustsCSCAR to keep the conditional volatility constant

equal to r through time: hCSCARCV
t ¼ r hCSCARtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhCSCARt Þ0 ~X th
CSCAR
t

p ¼ r
~X
�1
t fdtffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fd0t
~X
�1
t fdt

p where

~Xt ¼ ~Wt
~Kt

~W
0
t.CSCARfull followsCSCAR to adjustCAR, while taking into

account the covariance matrix and forward discounts. In contrast to
CSCAR, CSCARfull uses the covariance matrix Xt and inverts it instead of

the robust version of the inverse covariance matrix ~X
�1
t . Therefore,

hCSCARfull
t ¼ X�1t fdt.

VOL: Menkhoff et al. (2012) introduce a factor that captures unexpected
changes in global FX market volatility. Global FX market volatility at the
end of month t is computed as follows:

~VOLt ¼
1

Tt �N

XTt

s¼1

XN
i¼1
jjDxd;i;sjj;
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where Dxd;i;s is the daily exchange rate growth of currency i against the USD
on day s in month t, Tt is the number of trading days s in month t. The
measure uses absolute instead of squared exchange rate growths so that
outliers are less accentuated. The VOL index is the time series of residuals
after estimating an AR(1) process for ~VOLt and thus captures unexpected
changes in volatility, ~VOLt ¼ qv

~VOLt�1 þ VOLt. Note that VOL is not a
traded factor.Menkhoff et al. (2012) show that a traded portfolio thatmimics
VOL is almost identical to CAR.

HMLDB: Verdelhan (2018) develops a long-short strategy based on DOL
factor loadings. Following Verdelhan (2018), we regress currency returns on
the DOL and CAR factors. We then sort currencies into six quantiles k 2 f
1; . . . ; 6g according to the dollar beta (i.e., the DOL factor loading). If the
median forward discount rate of all developed currencies is positive (nega-
tive), then portfolioDBk takes a long (short) position in the equally weighted
portfolio of currency returns CTi;tþ1 for all currencies i in quantile k. The
HMLDB portfolio takes a long position in the high dollar beta portfolioDB5

and a short position in the low dollar beta portfolio DB1.

HMLC: Mueller, Stathopoulos, and Vedolin (2017) define the FX correla-
tion dispersion measure (FXC) as the difference between the average of the
top and the bottomdeciles of the realized conditional correlations between all
exchange rates. Following their procedure, we then sort currencies into four
portfolios based on the beta of their returns with respect to innovations in
FXC, denoted by DFXC. The equally weighted portfolios corresponding to
each quartile are denoted by FXCBi, 8i 2 f1; . . . ; 4g. The HMLC portfolio
takes a long position in the high DFXC beta portfolio (FXCB4), and a short
position in the low DFXC beta portfolio (FXCB1).

ILL: We follow Karnaukh, Ranaldo, and Soederlind (2015) to construct a
monthly systematic FX market illiquidity measure ~ILL as the average of
standardized daily relative bid-ask spreads and standardized 2-day Corwin
and Schultz (2012) estimates within a month and across all currencies. Our
data are not identical to Karnaukh, Ranaldo, and Soederlind (2015); that is,
there is a difference in the set of currencies and the daily recording time of the
bid-ask spreads, and our data cover the sample 1984–2016, while theirs cover
1991–2016.4 The correlation between our measure and theirs is 57% for the
monthly data from 1991 to 2016. Similar to the construction of the volatility
factor VOL, we fit an AR(1) model to ~ILL and use the residuals ILL as a
proxy for unexpected changes in illiquidity, ~ILLt ¼ qILL

~ILLt�1 þ ILLt.
Note that ILL is not a traded factor.

4 Karnaukh, Ranaldo, and Soederlind (2015) show that relative bid-ask spreads can be sensitive to the recording
time.
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SKEW: Rafferty (2012) introduces a FX market skewness (SKEW) factor,
which is the average skewness of exchange rates with positive minus the
average skewness of exchange rates with negative forward discounts,

SKEWt ¼ 1
N

P
i signðfdi;t�1Þ

1
Tt

PTt
s

ðDxd;i;s� �Dxd;i;sÞ3

1
Tt

PTt
s

ðDxd;i;s� �Dxd;i;sÞ2
� �3

2

, where Dxd;i;s is the daily

exchange rate growth of currency i against the USD on day s in month t,

�Dxd;i;s ¼ 1
Tt

PTt

h¼1
Dxd;i;h is the sample average of the daily exchange rate growth

Dxd;i;s in month t, andTt is the number of trading days in month t. Note that

SKEW is not a traded factor.

MKT, INT:Finally, we use two stockmarket factors: the valueweightedU.S.
stock market index (MKT) and the traded intermediary capital risk factor
(INT) of He, Kelly, and Manela (2017).
For a simple comparison of all 22 pricing factors employed in the paper,

see the Internet Appendix, which contains the pairwise correlations for all
factors. We analyze and discuss the factor characteristics in pricing the FX
markets in the remaining parts of the paper.

2.3 Importance of market timing

Someof the factors have proportional portfolioweight vectors at any point in

time t, that is, for factorsH and L,
hHi;tP
j
jjhHj;tjj
¼ hLi;tP

j
jjhLj;tjj

for all currencies i and

points in time t. The difference between H and L is the time series of the

notional values or in otherwords themarket timing, that is, generally,

P
j
jjhHj;tjjP

j
jjhLj;tjj

6¼
P

j
jjhHj;sjjP

j
jjhLj;sjj

for t 6¼ s. In particular, CAR and CARV M have proportional

portfolio weights at any time t, butCAR has a constant notional value, while
CARV M decreases (increases) its notional value if volatility increases
(decreases). Similarly, SCAR, SCARCV, NSCAR, andNSCARVM have pro-
portional portfolio weights at any time t, but the notional value ofNSCAR is
constant through time, while SCAR, SCARCV, and NSCARVM time the
market based on the absolute size of the current forward discounts and cur-
rent volatility. Finally, CSCAR, CSCARCR, and CSCARCV have propor-
tional portfolio weights at any time t, butCSCARCR has a constant notional
value, while CSCAR and CSCARCV dynamically adjust their notional value
depending on the absolute size of the forward discounts and the covariance
matrix of exchange rate growths.
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Conditional at time t the excess return distributions of factors with pro-
portional portfolio weights are proportional; that is, they are identical up to
the multiplication by the ratio of the notional values of the factors. However,
the unconditional return distributions of these factors are different if the time
series of the notional values are distinct. For instance, the unconditional
correlation is 0.64 for returns of CSCAR and CSCARCR, 0.79 for CSCAR
and CSCARCV, and 0.93 for CSCARCR and CSCARCV. Accordingly, when
we estimate and test a pricing model using general methods of moments, a
factor that times the market may fit the data better or worse than a normal-
ized factor with a constant notional value. It is eventually an empirical ques-
tion which time series of the notional value generates a factor that is able to
price assets. In the following, we document that CSCAR explains the cross-
section of FXmarket returns, whileCSCARCR andCSCARCV are rejected in
our tests.

3. Pricing Factor Model Tests

We test the ability ofCSCAR and the competing pricing factors (both single-
and multifactor models) described in Section 2 to price a broad cross-section
of test assets. We use the following N ¼ 36 test assets: 5 forward-discount-
sorted portfolios (fdPi 8i 2 f1; . . . ; 5g), 5 momentum-sorted portfolios
(MomPi 8i 2 f1; . . . ; 5g), 5 value-sorted portfolios (ValPi 8i 2 f1; . . . ; 5g),
6 dollar beta portfolios (DBi 8i 2 f1; . . . ; 6g), 4 FX correlation dispersion
portfolios (FXCBi 8i 2 f1; . . . ; 4g), and all traded pricing factors in Section
2, that is,DDOL,CARVM, SCAR,NSCAR,NSCARVM, SCARCV, VSCAR,
CECAR,CSCAR,CSCARCR, andCSCARCV.

5We separately implement all
our tests using data of the subset of 15 developed currencies and the full set of
29 developed and emerging currencies.6 Except for the empirical results con-
cerning CSCAR factor pricing analysis, results pertaining to the set of 29
currencies have been relegated to the Internet Appendix. The results are
robust across the two sets of currencies.
We demonstrate that the covariance and spread adjustments of the carry

trade are important to price the cross-section of FX market returns. In par-
ticular, we show that the single-factor CSCAR model cannot be rejected,
while other single- and multifactor models are rejected in our tests.

5 We exclude DOL, CAR, MOM, VAL, HMLDB, and HMLC portfolios because they are spanned by the 25
fdPi,MomPi, ValPi, DBi, and FXCBi portfolios.

6 To obtain a balanced panel of factors and test assets starting in January 1984, we need additional data before
January 1984 to construct signals for the MomPi, DBi, and FXCBi portfolios. Datastream has exchange rate
data quoted against the GBP before 1984. However, these data are less complete and considered less reliable
compared to the data in ourmain sample.We use only these earlier data to generate signals to sort currencies for
MomPi,DBi, and FXCBi in the beginning of ourmain sample. Our results are robust if we do not use the earlier
data, but the time series of our panel of factors and test assets becomes 5 years shorter, and the power of the tests
decreases.
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3.1 Estimation: Sequentially efficient GMM

We focus on linear factor pricing models E½Rt� ¼ bc, where Rt is the N� 1
vector of excess returns at time t of N test assets, N � K matrix b are the
loadings of theN test assets onK pricing factors (element (i, k) is test asset i’s
loading on factor k), K� 1 vector c are the market prices of risk or risk
premiums of the K factors, and E½x� is the mean of variable x.
We estimate the model using the sequentially efficient general method of

moments (GMM) (Hansen 1982; Cochrane 2005; Shanken and Zhou 2007).
We denote first-stage (consistent but inefficient) estimates of parameters b bybb, and sequentially efficient second-stage estimates by

bbb .We use the following
Kþ ð2þ KÞN moment conditions,

gðbÞ ¼

E½Ft � l�

E½
1

Ft

0@ 1A� ðRt � a� bFtÞ�

E½Rt � c01fN�1g � bc�

0BBBBBB@

1CCCCCCA ¼
0fK�1g

0fð1þKÞN�1g

0fN�1g

0BB@
1CCA

to estimate theKþ ð1þ KÞð1þNÞ parameters b ¼ ½l0; a0; vecðbÞ0; c0; c0�0.�
is theKronecker product. Ft is theK� 1 vector of theK factor realizations at
time t, and l is the corresponding K� 1 vector of expected factor realiza-
tions.N� 1 vector a ¼ E½Rt � bFt� are abnormal returns of theN test assets
in the first set of N time-series equations. vecðbÞ is an NK� 1 vector of all
elements in the factor loadings matrix b. c01fN�1g ¼ E½Rt � bc� is the com-
mon mispricing across the second set of N cross-sectional pricing equations.
1fN�1g is anN� 1 vector of 1 and 0fZ�1g is anZ� 1 vector of 0.We take into
account cross- and autocorrelations and heteroscedasticity following Newey
and West (1987) when constructing the covariance matrix of the parameter
estimates. Details about the estimation are in Appendix A.1.

3.2 Testable restrictions and model assessment

We use five tests to evaluate a factor pricing model. First, to validate pricing

factor k, we check whether it is priced. We use the t-test statistic
bbckffiffiffiffiffiffiffiffiffiffi
Varðbbckq

Þ

to

check whether the estimated factor premium bbck is statistically significantly

different from zero. If bbck is not significantly different from zero, then factor k
is not important to explain the cross-section of expected returns in FX
markets.
Second, if factor k is traded, then the pricing model implies that the factor

premium has to be equal to its expected excess return ck ¼ lk. We use the t-

test statistic
bbck�bblkffiffiffiffiffiffiffiffiffiffi
Varðbbckq

�bblkÞ

withVarðbbck � bblkÞ ¼ VarðbbckÞ þ VarðbblkÞ � 2Covðbbck
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; bblkÞ to test whetherbbck � bblk is statistically significantly different from zero. If
it is significantly different from zero, then we reject the model.
Third, we check whether the estimated common pricing error bbc0 in the

cross-sectional pricing equations is statistically significantly different from

zero using the t-test statistic
bbc0ffiffiffiffiffiffiffiffiffiffi
Varðbbc0q

Þ

. If bbc0 is significantly different from

zero, then we reject the model.
Fourth, we test whether the estimated abnormal returns bba� ¼ E½Rt� � bbc0

1fN�1g �
bbbbbc in theN cross-sectional pricing equations are jointly statistically

significantly different from zero. We use bba�0Covðbba�Þ�1bba� as the test statistic,
which is v2 distributedwithN –K degrees of freedom.A large test statistic is a
rejection of the model.
Fifth, we test whether the estimated abnormal returns bba ¼ E½Rt �

bbbFt� in
theN time-series pricing equations are jointly statistically significantly differ-
ent from zero. Our test statistic is T�N�K

NT
bba 0CovðbbaÞ�1bba � FN;T�N�K. A large

test statistic is a rejection of the model. This test is only possible if all pricing
factors in themodel are traded because in the time-series equations factor risk
premiums are estimated using average excess returns of the factors.
Sixth, and finally, we report the R2 of the N cross-sectional pricing equa-

tions. R2 provides an indication of how well the model explains average
returns in the cross-section, but it is not a formal test to reject a model.
Accordingly, we do not place much weight on this criterion.

3.3 Composition of CSCAR
Before we present our GMM estimation and test results, we will discuss the
portfolio composition of CSCAR. Table B1 provides summary statistics of
the portfolio weights hCSCARt of CSCAR. CSCAR is similar to CAR in the
sense that on average it takes long (short) positions in currencies with positive
(negative) forward discounts. Indeed, the cross-sectional correlation Corrð
hCSCARi ; fdiÞ between the average portfolioweight hCSCARi ¼ 1

T

P
t h

CSCAR
i;t and

the average forward discount fdi ¼ 1
T

P
t fdi;t is 0.93 for our data of 15 devel-

oped and 0.92 for our data of 29 developed and emerging currencies. Though,
this correlation is large for average quantities, the portfolio weights are
changing through time and the cross-sectional correlation in month t, Corrt
ðhCSCARi;t ; fdi;tÞ is often much smaller. On average the correlation is only 0.66
for the data of 15 and 0.63 for 29 currencies, and in somemonths it even turns
negative. Accordingly, one must sort currencies according to forward dis-
counts when constructing CSCAR, and the covariance matrix between ex-
change rate growths plays a crucial role as well.
Moreover, unlike that ofCAR, the portfolio composition ofCSCAR is far

from an equally weighted scheme, and portfolio weights vary through time.
The skewness of the unconditional distribution of portfolio weights is
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predominantly positive (negative) for currencies with positive (negative) av-
erage forward discounts. That is, weights take more extreme positive (nega-
tive) values for currencies with large (small) average forward discounts.
Portfolio weights vary through time because of the substantial time-series

variation in exchange rate forward discounts and the conditional covariance
matrix. The variation in forward discounts is considerable, but we observe
that forward discounts are converging toward zero (especially for developed
currencies) and appear more stable in more recent times.
We further document that the average FX market volatility measured by
~VOLt (see Section 2.2 or Menkhoff et al. 2012) and the average correlation

between exchange rate growths are changing substantially through time. The

average correlation is calculated as qt ¼ 1
N

PN
i¼1

qi;t in month t, where qi;t ¼ 1
N�1P

j 6¼i CorrtðDxi;t;Dxj;tÞ is the average correlation of exchange rate growth i

with all other exchange rate growths j, and we estimate the conditional cor-
relation CorrtðDxi;t;Dxj;tÞ between exchange rate growths i and j in month t

using daily exchange rate growthswithin themonth.While forward discounts
and the average correlation vary through time we do not observe a particular
relationship to NBER recession periods. In stark contrast, FX market vola-
tility spikes during the financial crisis in 2007–2008.
Finally, we find again a strong time-series variation in the percentage of

eigenvalues (and corresponding eigenvectors), that we retain after we diago-
nalize the covariance matrix Xt and construct the robust version of the
inverted covariance matrix ~X

�1
t . There is a negative correlation of �0.4 for

our data of 15 currencies and�0.66 for 29 currencies between the percentage
of eigenvalues retained and the average correlation between exchange rate
growths. This finding is intuitive: we need few (many) PCs to explain the
common variation in exchange rate growths if the average correlation is far
from (close to) zero.
The portfolio weights of CSCAR are functions of the forward discounts

and the covariance matrix. Thus, the notional value
P

i jjh
CSCAR
i;t jj, leverageP

i h
CSCAR
i;t and turnover

P
i jjhi;t � hi;t�1jj of CSCAR vary significantly

through time. This time series illustrates the market timing of CSCAR;
that is, it increases (reduces) its risk exposure and trades more aggressively
(conservatively) when the absolute size of the forward discounts is large
(small) and covariances are small (large). We observe that all three measures
generally approach zero in more recent times, which is mostly driven by the
narrower forward discount spreads.

3.4 CSCAR as a single pricing factor

Wefirst test the single-factorCSCAR pricingmodel. This is themain result of
our paper. Table B2 summarizes our five tests to evaluate the model when we
use data from 15 developed (panel A) and 29 developed and emerging
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currencies (panel B). For each data set, we estimate the model using seven
different sets of test assets and report the results in separate columns. The first
column with the heading “5 IntP” uses only the five forward-discount-sorted
portfolios as test assets. These forward-discount-sorted portfolios are popu-
lar test assets in the literature. In the column labeled “5MomP& 5ValP” we
estimate ourmodel using the 5 portfolios sorted on past currency returns and
the 5 portfolios sorted on real exchange rates. “Fifteen assets” tests ourmodel
using IntP, MomP, and ValP together. “Six DB & 4 FXCB” uses the 6
portfolios sorted based on dollar beta and the 4 portfolios sorted based on
DFXC beta. “Twenty-five assets” uses 25 IntP,MomP,ValP,DB, andFXCB
portfolios together to test our model. “Eleven assets” uses the 11 traded
factors DDOL, CARVM, SCAR, NSCAR, NSCARVM, SCARCV, VSCAR,
CECAR, CSCAR, CSCARCR, and CSCARCV. “Thirty-six assets” uses all
test assets combined to estimate and test our model. If we use 10 or less test
assets, then the power is low and it is difficult to reject any hypothesis.7 In our
discussionwe emphasize the case of all 36 assets as the power of the tests is the
highest.
The results of our five tests are as follows. First, we estimate a sizable

implied annual risk premium bbcCSCAR for CSCAR in the cross-section of
FX market returns. For the case of 36 test assets, bbcCSCAR is 7.14% for the
data set of 15 developed currencies and 10.57% for the set of 29 currencies.
These estimates are highly statistically significant with t-statistics of 4.21 and
5.39. Thus,CSCAR is an important factor to price FXmarket returns in the
cross-section. The estimates are similar (and differences are well within com-
mon confidence bounds) for the diverse sets of test assets and across both the
data of 15 developed and the set of 29 currencies.bbcCSCAR is always statistically
significant, except when we use 6 DB and 4 FXCB as test assets. This is
attributed to the large estimation errors and low power when we have few
test assets.
Second,bbcCSCAR is not statistically significantly different from the historical

average return bblCSCAR. The point estimate of bblCSCAR is 8.4% when we use
data of 15 developed currencies and 10.83% when we use 29 currencies.
These point estimates are close to the implied premium bbcCSCAR, especially
for the set of 36 test assets and 29 currencies. This result is important because
CSCAR is itself a traded asset and thus has to be correctly priced.We confirm
this finding in all sets of test assets for both 15 and 29 currencies, except for
the case of 11 test assets when we use 15 currencies. In this case bbcCSCAR is 2%
smaller than bblCSCAR, which is significant at the 10% level with a p-value of
5.2%.
Third, we do not find a common pricing error bbc0 in the cross-sectional

pricing equations. For the case of 36 test assets, bbc0 is 0.71% per year for 15

7 Results for the estimation using 5MomP, 5 ValP, 6 DB, or 4 FXCB separately are available on request. These
estimates are not interesting as the power is too low for any meaningful test.
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developed currencies and 0.03% for 29 currencies, neither is significant.
Depending on the set of test assets and the set of currencies, the point estimate
ofbbc0 varies between -1.34% and 2.56%per year. The point estimates are only
significant on the 10% level in two cases of 11 test assets and 15 currencies, or
6 DB and 4 FXCB test assets and 29 currencies.
Fourth, in all specifications the abnormal returns bba� in the cross-sectional

pricing equations are not jointly statistically significantly different from zero,
except for the case of 36 test assets and 29 currencies when the p-value is 8%.
Note that the test statistic is substantially smaller than similar statistics for
other models that we test in the subsequent sections. Therefore, while not
perfect, the single-factorCSCARmodel explains the cross-section of average
returns better than the alternativemodels. Further note that transaction costs
and capital controls can be an issue for emerging currencies. For instance,
Maurer, Pezzo, and Taylor (2020) demonstrate the importance of transac-
tion costs for FX trading strategies and show that an optimization over costs
is required to efficiently tackle the problem.
Fifth, the joint test results of the abnormal returns bba in the time-series

pricing equations are similar to the joint tests of the abnormal returns in the
cross-section. This is not surprising given that the point estimate of the im-
plied risk premium of CSCAR is close to its historical average return. The p-
value of the F-test is always well above 10% for all sets of test assets.
Sixth, and finally, Figures C1 andC2 compare themodel-implied expected

returns and the average historical returns of each test asset. The model cap-
tures the cross-section of average returns well. TheDB portfolios are the only
potential complication. Three of the six DB portfolios have significant ab-
normal returns in the single CSCAR model. However, none of these abnor-
mal returns is significant at the 1% level.
To conclude, we report strong evidence in favor of the single-factor

CSCAR model. The risk premium of CSCAR is large and significant when
we estimate it in the cross-section of FX returns. Our estimate is robust to the
choice of the set of test assets or whether we use data of 15 developed or 29
developed and emerging currencies. Furthermore, we do not find robust
evidence to reject the single-factor CSCAR model. The risk premium esti-
mated in the cross-section is not statistically different from the historical
average return of CSCAR; the common pricing error in the cross-sectional
pricing equations is not significantly different from zero; and abnormal
returns are neither jointly significant in the cross-sectional pricing equations
nor in the times-series equations.

3.5 Importance of covariance and spread adjustments

In Tables B3 to B6 we show that models with various alterations of the single
CSCARmodel are rejected. Therefore, we argue that both the covariance and
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spread adjustments are critical for CSCAR to price the cross-section of FX
market returns.
In every table, we present three model specifications. For each model, we

present results for the cases of 25 (columns 1 to 3) and 36 test assets (columns
4 to 6) using data of 15 developed currencies. In the Internet Appendix, we
show that our results are similar for the larger set of 29 developed and emerg-
ing currencies. In addition to the five tests described in Section 3.2, in the last
two rows we also report the abnormal returns of CSCAR as a test asset
according to the model under investigation. If the abnormal return is not
statistically significantly different from zero, then the model spans CSCAR
and contains all its relevant information for pricing. In contrast, if the ab-
normal return is significant, then CSCAR contains important risk not cap-
tured by the model. We find that the abnormal return of CSCAR is positive
and significant in all models.

CAR: Columns 1 and 4 in Table B3 report the results of the well-known
DOL-CAR two factor model. Recall that CSCAR adjusts CAR by taking
into account the covariance matrix and size of the forward discounts. Thus,
comparing the DOL-CAR model to the CSCAR model reveals the impor-
tance of these adjustments for pricing. Confirming the results in the literature,
Tables B3 shows thatDOL is not priced in the cross-section, and CAR has a
significant risk premium between 4.06% and 4.36%, depending on the set of
test assets we use for the estimation. The implied risk premium forCAR is not
significantly different from its historical average returns. In all specifications
we are able to reject the model, i.e., bbc0 or the abnormal returns in the cross-
section bba� or the time-series bba are statistically significantly different from
zero. In the case of 36 test assets the abnormal returns in the cross-section
and time-series equations are large, and we reject the hypothesis that they are
jointly equal to zero with p-values less than 0.1%. This confirms the results in
the literature that the DOL-CAR model is not able to explain expected
returns if we consider assets different from forward-discount-sorted portfo-
lios. In the last two rows, we report the abnormal returns of CSCAR in the
DOL-CAR model. The abnormal return of CSCAR is 5.42% in the cross-
sectional equation and 6.51% in the time-series equation. The t-statistics are
between 3.67 and 4.69. These large abnormal returns confirm thatCSCAR is
not spanned by the DOL and CAR factors.
Finally, in Figure C3, we compare theDOL-CARmodel-implied expected

returns to the historical average returns of our 36 test assets. The model fails
to explain about half of the test assets; that is, the abnormal returns are
statistically significantly different from zero. The model does a good job of
explaining the IntP, ValP, MomP, and FXCB portfolios as none of the ab-
normal returns is significant. The DOL-CAR model is unable to explain the
average returns of all the DB portfolios and all 11 test assets, which include
several variations of ðCSÞCAR. Most of the abnormal returns of these test
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assets are significant at the 1% level. This is in stark contrast to the single-
factor CSCARmodel illustrated in Figures C1 and C2. The model is able to
explain the cross-section of average returns.
We conclude that the covariance and spread adjustments are important in

explaining the cross-section of average returns of a broad set of test assets.

DDOL: Columns 2 and 5 in Table B3 show that the rejection of the DOL-
DDOL model is similar to that of the DOL-CAR model. The implied risk
premium ofDDOL changes when we use 25 versus 36 test assets to estimate
the model. We reject the hypothesis that the abnormal returns are jointly
equal to zero in the cross-sectional and time-series equations. Finally, abnor-
mal returns of CSCAR are large (at 6.66% and 7.43%) and highly statisti-
cally significant, suggesting that DOL-DDOL does not span CSCAR.

NSCAR: NSCAR chooses portfolio weights proportional to the forward
discounts but keeps the notional value of the factor constant through time.
Thus, a model with NSCAR informs us of whether a spread adjustment of
CAR is enough to explain the cross-section of average returns. Columns 3
and 6 in Table B3 report the results. Overall, we see only modest improve-
ments of DOL-NSCAR over the DOL-CAR model. For the case of 25 test
assets themodel does a reasonable job to explain the cross-section of expected
returns but we still reject (with a p-value of 8%) the join hypothesis that
abnormal returns in the cross-sectional or time-series dimensions are equal
to zero. Therefore, the spread adjustment makes some progress (though the
model is still imperfect) to capture the risks of the MomP, ValP, DB and
FXCB portfolios. In the case of 36 test assets, the corresponding p-values are
less than 1%, and the model is clearly rejected (similar to the DOL-CAR
model). We find again that DOL and NSCAR do not span CSCAR; that is,
the abnormal returns of the CSCAR are always positive and significant, at
5.36% and 5.60%.

CARVM and NSCARVM: A natural question is whether we need the entire
covariance matrix to adjust CAR or whether managing the volatility as
suggested by Fleming, Kirby, and Ostdiek (2001) and Moreira and Muir
(2016) is sufficient. We investigate the ability of CARV M andNSCARV M as
pricing factors. Remember that these two factors differ from CAR and
NSCAR because of the market timing being based on the current volatility,
a fact that has implications on the unconditional return distribution and our
unconditional tests. Columns 1, 2, 4 and 5 in Table B4 suggest that managing
the volatility of CAR or NSCAR does not significantly improve the DOL-
CAR model. The DOL-CARVM and DOL-NSCARVM models appear to
explain the cross-section of average returns in the case of 25 test assets but
are rejected in the case of 36 test assets. In particular, in bothmodels we reject
the hypothesis that the abnormal returns in the cross-sectional and time-
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series equations are jointly equal to zero with p-values less than 1%. Finally,
CSCAR has again highly significant abnormal returns between 5.27% and
6.10% in both models, which means that CSCAR is not spanned by these
factors. We conclude that a volatility-managed carry (CAR or SCAR) factor
does not explain the cross-section of FX returns and it is important to ac-
count for the entire covariance matrix.

Eight-factor model: In columns 3 and 6 in Table B4, we test whether a model
that includes theMOM andVAL factors in addition toDOL, and the above
discussed CAR, CARVM, NSCAR, and NSCARVM factors can explain the
cross-section of FX returns. Not surprisingly, the model is not rejected in the
case of 25 test assets. However, we still reject the eight-factor model in the
case of 36 test assets based on the fact that abnormal returns in the cross-
sectional and time-series equations are not jointly equal to zero. The p-values
are always less than or equal to 1%. Moreover, the abnormal return of
CSCAR is positive and significant (at 3.94% and 4.76%), suggesting that
the eight factors are not able to span all the priced risk contained inCSCAR.
Thus, momentum, value, and the volatility of the carry are not sufficient to
capture the information contained in the covariance and spread adjustments
of CSCAR.

SCARandVSCAR: Similar toNSCAR andNSCARVM,SCAR andVSCAR
are the spread-adjusted versions of CAR. In addition to the spread adjust-
ment, SCAR times the market based on the size of the forward discounts. In
addition to the market timing of SCAR, VSCAR accounts for the variances
of all currency returns but ignores the correlations. Thus,SCAR andCSCAR
only differ because of the covariance adjustment, whileVSCAR andCSCAR
only differ because of the correlationmatrix of exchange rate growths.While
we estimate significant risk premiums for SCAR and VSCAR, we still reject
both models. Columns 1, 2, 4, and 5 in Table B5 report the results. For the
SCAR model, abnormal returns in the cross-sectional and time-series equa-
tions are jointly different from zero for the cases of 25 and 36 test assets. For
the VSCAR model, we cannot reject the model in the case of 25 test assets.
However, we always reject VSCAR model when we use our set of 36 test
assets. For both the SCAR and VSCAR models, abnormal returns for
CSCAR are sizable and significant, ranging between 4.05% and 6.22%.
We conclude that the covariance adjustment is key to explain the cross-
section of returns. Moreover, the correlation structure between exchange
rate growths is important and accounting only for exchange rate growth
variances is not sufficient.

CECAR: In contrast to the above analysis, where we confirm that the co-
variance adjustment is important, we further investigate the importance of
the spread adjustment. CECAR accounts for the covariance matrix in the

Review of Asset Pricing Studies / v 0 n 0 2021

22

D
ow

nloaded from
 https://academ

ic.oup.com
/raps/advance-article/doi/10.1093/rapstu/raab019/6325097 by U

niversity Libraries | Virginia Tech user on 19 January 2022



same way as CSCAR but does not account for the size of the forward dis-
counts. Columns 3 and 6 in Table B5 report the results. TheCECAR factor is
compensated with a significant risk premium in the cross-section, though the
size of the premium substantially varies with the set of test assets. In the case
of 25 test assets the rejection of the model is marginal. In the case of 36 test
assets the abnormal returns in the cross-sectional and time-series equations
are jointly different from zero and we reject the model with p-values less than
1%. Moreover, the abnormal returns of CSCAR are significant (at 5.16%
and 5.98%), and, thus, CECAR fails to capture the priced risks contained in
CSCAR. We conclude that fully accounting for the forward discount is im-
portant and the covariance adjustment itself is not sufficient.

CSCARCR and CSCARCV: To investigate the importance of CSCAR’s mar-
ket timing (i.e., the time variation in the notional value), we test CSCARCR

and CSCARCV as pricing factors. Recall that the portfolio compositions of
CSCARCR, CSCARCV, and CSCAR are identical up to the notional value.
CSCARCR is constructed to keep the notional value, and CSCARCV is con-
structed to keep the conditional volatility constant through time. Note that
the constant notional value does not imply a constant conditional volatility
because the volatility in FXmarkets is heteroscedastic. The time variation in
the notional value affects the unconditional distribution of returns and has
important implications for our model tests. It is not clear ex ante and even-
tually an empirical question whether the market timing of CSCAR or
CSCARCV or no market timing as in CSCARCR is desirable for pricing
assets. Columns 1, 2, 4 and 5 in Table B6 report the results. Both
CSCARCR and CSCARCV are compensated by large and significant risk
premiums. Neither of the two models can be rejected in the case of 25 test
assets, but we reject both models in the case of 36 test assets because abnor-
mal returns in the cross-sectional and time-series equations are jointly signif-
icantly different from zero. Moreover, in both models the abnormal returns
of CSCAR are significant, (ranging between 2.79% and 4.96%), suggesting
that CSCAR carries important information that is not spanned by the
CSCARCR and CSCARCV factors.

CSCARfull: To construct CSCAR, we diagonalize the covariance matrix Xt

and remove small eigenvalues and corresponding eigenvectors to obtain a
robust version of the inverse of the covariance matrix ~X

�1
t (see details in

Section 2.1). This approach helps to mitigate estimation errors in the covari-
ance matrix and avoid near-arbitrage opportunities.8 CSCARfull uses the
“full” covariance matrix Xt; that is, it does not remove the small eigenvalues.

8 There exist other methods to obtain robust estimates of the covariance matrix. For instance, the shrinkage
estimator of Ledoit and Wolf (2003) is an alternative approach. We find that our approach to diagonalize the
covariance matrix and remove small eigenvalues and eigenvectors yields more desirable results. Results using
shrinkage estimator are available on request.
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Therefore, comparing CSCARfull to CSCAR informs us whether the diago-
nalization and removing small eigenvalues is relevant. Columns 3 and 6 in
Table B6 report the results. Similar to CSCAR, CSCARfull is priced in the
cross-section of returns and has a large and significant risk premium. The
implied risk premium is larger than the historical average return of
CSCARfull. We reject the CSCARfull model because the abnormal returns
in the cross-sectional and time-series equations are jointly significantly dif-
ferent from zero in all model estimations. Finally, we find thatCSCAR has a
positive and significant abnormal return (at 5.53% and 7.65%), and, thus,
CSCARfull does not capture all the information contained in CSCAR. We
conclude that diagonalizing the covariance matrix Xt and removing small
eigenvalues and corresponding eigenvectors to construct a robust version of
the inverse of the covariance matrix, that is, ~X

�1
t , is critical for CSCAR to

correctly price the cross-section of FX market returns.
To conclude, we confirm that both the covariance and forward discount

adjustments are important for CSCAR to price the cross-section of FXmar-
ket returns. This finding is important for future empirical and theoretical
research. First, empirical research could analyze the structure of the covari-
ance matrix and relate patterns in the exchange rate growth covariation to
economic fundamentals. Second, many theoretical models focus on forward
discounts without investigating the pricing implications of exchange rate
growth variances and correlations. Our results reveal the importance of an-
alyzing the economic mechanism that relates the covariance matrix to
expected returns in FX markets.

3.6 FX market volatility, correlations, illiquidity, and crash risk

So far, we have established that covariance and spread adjustments to the
carry trade are important to obtain a factor that is able to consistently price
the cross-section of FX returns. Next, we investigate whether other factors
that capture FX market volatility, correlations, illiquidity, or crash risk con-
tain the same information or whether our proposed mean-variance adjust-
ments are special.
Menkhoff et al. (2012) show the importance of the unexpected changes in

FXmarket volatility (VOL) in pricing currency returns.Karnaukh,Ranaldo,
and Soederlind (2015) and Mancini, Ranaldo, and Wrampelmeyer (2013)
document the importance of illiquidity (ILL) in explaining returns. Related
to crash risk, Rafferty (2012) introduces an FX skewness (SKEW) factor,
Lettau,Maggiori, andWeber (2014) construct a stock market downside risk
(DSR) factor, and He, Kelly, andManela (2017) show that an intermediary
capital risk factor (INT) is priced in the cross-section of interest-rate-sorted
currency portfolios. Finally, Mueller, Stathopoulos, and Vedolin (2017) and
Verdelhan (2018) propose an FX correlation dispersion (HMLC) factor and
a dollar beta (HMLDB) factor to address time variations in correlations
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across currencies. In the following, we show that none of these factors is able
to explain the cross-section of FX market returns, and these factors do not
span the CSCAR factor.

VOL, ILL, SKEW, DSR, INT: In Tables B7 and B8, we test whether vola-
tility, illiquidity, or crash risk factors explain the cross-section of our 25 and
36 test assets and whether CSCAR is simply picking up these risks. VOL,
ILL, SKEW, andDSR are not traded, and, thus, we cannot test whether the
implied risk premium is equal to the historical average return and whether
abnormal returns in the time-series equations are jointly zero. Only the
SKEW factor has a robust and significant market price in the cross-
section. Either all other factors have consistently insignificant market prices
or the implied risk premium varies across sets of test assets and currencies.
Note that these findings are not inconsistentwith the literature.We consider a
much larger set of test assets (i.e., sets of 25 or 36 test assets, while the liter-
ature focuses on only the five IntP), and thus, the bar for the factors to
succeed is higher than that for the original papers that introduce these factors.
The abnormal returns are always (for 25 or 36 test assets) statistically signif-
icantly different from zero for allmodel specifications. Therefore, we reject all
models without exception. Finally, the abnormal returns of CSCAR are al-
ways large and highly statistically significant (ranging between 5.83% and
6.97%), which implies that the priced risks captured by CSCAR are not
explained by VOL, ILL, SKEW, MKT, DSR, or INT.

HMLBD,HMLC:Table B9 reports the results forCAR-HMLDB andDOL-
HMLC, which are the two-factor models proposed by Verdelhan (2018) and
Mueller, Stathopoulos, and Vedolin (2017), respectively. These models are
designed to capture FX correlation risk. The abnormal returns in the cross-
section of the 25 test assets are jointly significantly different from zero and we
reject theCAR-HMLDBmodel.We also rejectCAR-HMLDB (with p-values
less than 1%) if we use our set of 11 portfolios or our complete set of 36 test
assets. Moreover, we always reject theHMLCmodel independent of the set
of test assets or currencies as the abnormal returns are always significantly
different from zero both in the cross-section or in the time-series equations.9

9 Note that average returns of the HMLC portfolio are not robust across our sets of developed and emerging
currencies. bblHMLC is -2% for the 15 developed currencies and 0.2% for the 29 currencies (results concerning 29
currencies being reported in the Internet Appendix). At first, this seems at odds with the -6.4% reported by
Mueller, Stathopoulos, and Vedolin (2017). However, their sample comprises G10 currencies from 1996 to
2013. In our data, bblHMLC is -4.7% for 15 currencies and -1% for 29 currencies during the same period.
Moreover, they report an average return of -3.7% for the period from 1984 to 2013, while in our databblHMLC is -2.4% for 15 developed currencies and -0.2% for 29 currencies. Therefore, our estimates of bblHMLC

in our analysis differ from those of Mueller, Stathopoulos, and Vedolin (2017) because of the sample period,
and, more importantly, the performance ofHMLC appears to depend on the set of currencies. In comparison,
our estimates of bblHMLDB are in line with the estimates by Verdelhan (2018). The average return is 4.3% for
developed and emerging currencies from 1988 to 2016 in the data on Adrien Verdelhan’s website. In our data,bblHMLDB is 4.1% for 15 developed currencies and 4.2% for 29 currencies from1988 to 2016. In ourmain analysis,bblHMLDB is 3.9% for 15 developed currencies and 3.7% for 29 currencies.
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Finally, the abnormal returns ofCSCAR are always positive and statistically
different from zero (ranging from 5.04% to 8.19%), suggesting that neither
the dollar beta nor FX correlation dispersion factors captures the priced risks
of CSCAR.
We conclude that CSCAR captures important information to price the

cross-section of FX market returns, and these risks are not explained by FX
volatility, correlation, illiquidity or crash risks. The finding that crash risk
does not explain the cross-section of returns reinforces the findings byDaniel,
Hodrick, and Lu (2014), Bekaert and Panayotov (2020), and Maurer, To,
and Tran (2020). These papers construct profitable currency trading strate-
gieswith returns that cannot be explained by crash risks and question the idea
that crash risks are important for pricing in FX markets.

3.7 Predictability of FX market returns

The conditional covariance matrix (i.e., the variances and the correlation
structure of currency returns) and the forward discounts are both critical
to correctly price the cross-section of FX market returns. Since the forward
discounts and the conditional covariance matrix vary through time,CSCAR
dynamically adjusts its notional value and leverage in response to these
changes. This is essentially market timing, and we demonstrate above that
it is an integral feature forCSCAR to succeed in our tests, that is, factors that
are proportional to CSCAR at time t but differ in their market timing are
rejected in our tests, while theCSCAR single-factormodel cannot be rejected.
To provide additional support, in this section, we provide evidence that
CSCAR is able to predict future returns, volatility and illiquidity in FX
markets. The intuition is that if the conditional covariance matrix and for-
ward discounts are important determinants of conditional expected returns
(i.e., pricing) and if they vary through time, thenFXmarket returns should be
predictable. We further show that global FX market volatility does not pre-
dict returns, which emphasizes the importance of the information contained
in the correlation matrix and forward discounts and the difference between
CSCAR and a volatility-managed carry factor in the spirit of Della Corte,
Sarno, andTsiakas (2009),Daniel,Hodrick, andLu (2014), Fleming,Kirby,
and Ostdiek (2001) and Moreira and Muir (2016).
For N currencies (plus the USD as the base), we have N�ðN�1Þ

2 elements in
the covariance matrix and N forward discounts. It is not practical to keep
track of so many state variables. However, the portfolio weights of CSCAR
are functions of the covariancematrix and forward discounts. Thus,CSCAR
summarizes the information of these state variables in terms of its portfolio
holdings, and the variables we are particularly interested in are CSCAR’s
notional value

P
i jjh

CSCAR
i;t jj, its leverage

P
i h

CSCAR
i;t and its turnoverP

i jjhi;t � hi;t�1jj. Intuitively, a large (small) notional value indicates that
absolute values of forward discounts are large (small) relative to the
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covariance matrix. Moreover, if CSCAR is the optimal investment strategy,
then the leverage summarizes the ”attractiveness” of risky assets relative to
the risk-free asset. Finally, the turnover summarizes how much the covari-
ance matrix and forward discounts (and thus, portfolio weights of CSCAR)
change from month to month. Therefore, changes in the notional value,
leverage and turnover characterize changes in the conditional covariance
matrix and forward discounts. We use these three measures to capture the
variation of the original state variables. As we saw in Section 3.3, there is a
substantial variation in these three time series.
Our hypothesis is that the covariance matrix and forward discounts are

important state variables and conditional expected returns depend on these
state variables. Since we observe a substantial time-series variation in these
variables, then conditional expected FXmarket returns and volatility should
vary through time and returns and volatility should be predictable. As a
preview, we find strong evidence that FX market returns, volatility and illi-
quidity are predictable.
We run predictive regressions,

Yt;tþh ¼ cconst þ ctrendtþ
X
j

cjxj;t þ et;

where the dependent variable Yt;tþh ¼ 1
h

Ph
s¼1

Ytþs is the average realization of

Y over the subsequent hmonths after month t, t captures any time trend, xj;t
is the realization of predictor j in month t, et is white noise, and cconst, ctrend
and cj are the regression coefficients.
Our first three predictors are the notional value, leverage, and turnover of

CSCAR. We further investigate the predictive power of the sign of the me-
dian forward discount x4;t ¼ signðmedianffdi;tgÞ. This measure is identical to
the conditioning variable used to construct DDOL, that is, if the median
forward discount is positive (negative) DDOL takes a long (short) position
in DOL. Additionally, we use global FX market volatility x5;t ¼ ~VOLt and
global FX market illiquidity x6;t ¼ ILLt as predictors. The dependent (pre-
dicted) variables Y are the future global FX market volatility ~VOL and illi-
quidity ~ILL, and future returns ofCSCARCR,HML,DOL,D-DOL,MOM,
and VAL.10 We consider prediction horizons h of 1, 6, 12, and 18 months;
that is, we test whether our predictors xj are able to explain 1-month and up
to 18-month-ahead realizations of our dependent variables Y.
Table B10 reports the results of our predictive regressions for 15 developed

currencies. The notional value of CSCAR is significantly correlated with
future FX market volatility, illiquidity and returns of CSCARCR, CAR,
DDOL, and MOM. For returns of DOL and VAL, there is evidence of

10 If we are able to predict the returns of CSCARCR, then we can also predict the returns of CSCAR because the
two factors only differ with respect to the notional value. Results are available on request.
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predictability at longer horizons of 6 to 18 months. The notional value also
predicts volatility and illiquidity at a short horizon. We find similar statisti-
cally significant coefficients for the leverage of CSCAR. The turnover of
CSCAR has some power to predict volatility and illiquidity but there is no
robust evidence to predict returns. The sign of the median forward discount
consistently predicts the return ofDOL and illiquidity, but we find no robust
evidence that it has the power to predict volatility or returns of the other
factors. Finally, past volatility has the power to predict future volatility and
similarly past illiquidity well forecasts future illiquidity. Volatility and illi-
quidity do not have a robust correlation with future FX market returns.
The adjustedR2 of the predictive regressions is impressive. At the 1-month

horizon we are able to forecast between 53% and 59% of the variation in FX
market volatility and illiquidity. At the 6-, 12- and 18-month horizons the
adjusted R2 decreases monotonically to 15%-32%. The adjusted R2 to pre-
dict returns of CSCARCR at the 1-month horizon is 3.85%. It increases to
19.5% at the 18-month horizon. At the 1-month horizon, the adjusted R2 to
forecast returns of CAR are 2.22%, DOL 5.12%, DDOL 1.37%, MOM
0.05%, and VAL -0.05%. R2 increases to 9.52% for CAR, 25.7% for
DOL, 27.01% for DDOL, 0.11% for MOM, and 7.62% for VAL at the
18-month horizon.
The difference in the predictive power between the notional value and the

leverage of CSCAR and the global FX market volatility emphasizes the dif-
ference between the covariance and spread adjustment of the carry versus a
volatility-managed carry factor in the spirit of Della Corte, Sarno, and
Tsiakas (2009), Daniel, Hodrick, and Lu (2014), Fleming, Kirby, and
Ostdiek (2001), andMoreira andMuir (2016).CSCAR is timing the market
in response to changes in forward discounts, volatility, and correlations, all of
which are important. In contrast, volatility-managed factors are only
responding to changes in volatility.
In summary, we take the predictive power of the notional value and the

leverage of CSCAR as evidence that CSCAR is able to forecast future
expected returns and risks in FX markets. FX market volatility or illiquidity
do not have the same predictive power. This is consistent with our previous
finding that both the covariance and spread adjustments are important deter-
minants of conditional expected returns and that the correlation structure
between exchange rate growths is critical to price FX market returns. This is
an important finding for future empirical research to identify economic fun-
damentals that drive the time-series variation in the conditional covariance
matrix and forward discounts. Our finding also informs theoretical research
to focus on economic mechanisms responsible for a time-series variation in
the conditional covariance matrix of exchange rate growths and forward
discounts.
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4. Model

To conceptually illustrate the intuition and properties of the pricing factor
based on covariances and spreads, we analyzeCSCAR in the tractable inter-
national asset pricing framework of Lustig, Roussanov, and Verdelhan
(2014) (while relegating the technical derivations to the Internet Appendix).
Specifically, we consider the benchmarkmodel ofMueller, Stathopoulos, and
Vedolin (2017), and perform a comparative analysis on their international
correlation risk factor and the CSCAR factor within that model. We extend
their analysis by explicitly computing the model-implied portfolio composi-
tion of the two risk factors. The computation maps the empirical factors to
their theoretical counterparts in the model, and helps elucidateCSCAR from
a perspective of the current literature in international finance.

4.1 Model and asset pricing quantities

We adopt and briefly describe themodel setup ofMueller, Stathopoulos, and
Vedolin (2017) that belongs to the no-arbitrage log-normal setting of Lustig,
Roussanov, and Verdelhan (2014). We relegate the technical derivations to
the InternetAppendix. The international correlation risk factor is formulated
in a benchmark complete-market setting of N þ 1 countries indexed by
i 2 f0; . . . ;Ng, where i ¼ 0 designates the domestic (U.S.) country.
Country i’s SDF is given,

log
Mi;tþ1
Mi;t

¼ mi;tþ1

¼ �a� vzt � /zwt �
ffiffiffiffiffiffiffi
jzt
p

uitþ1 �
ffiffiffiffiffiffiffiffi
cizwt

q
uwtþ1 �

ffiffiffiffiffiffi
dzt

p
ugtþ1; (1)

in which uwtþ1 and ugtþ1 are two independent global shocks, and uit country-
specific independent shock. Local and global state variables (or, pricing fac-
tors), zt and zwt , capture the local and global mean-reverting dynamics of the
prices of risks. The first global shock uwtþ1 has (permanent) heterogeneous
prices of risk in different currencies determined by common zwt and (perma-
nent) heterogeneous positive loadings fcig (Lustig, Roussanov, and
Verdelhan, 2014).
As markets are complete, currency i’s exchange rate against the USD

equals the ratio of SDFs, Xi;t ¼ Mi;t

M0;t
, where Xi;t denotes the amount of

USD per unit of currency i,

log
Xi;tþ1
Xi;t

¼ mi;tþ1 �m0;tþ1 ¼
ffiffiffiffiffiffiffi
jzt
p ðu0tþ1 � uitþ1Þ þ ð

ffiffiffiffiffi
c0

p
�

ffiffiffiffi
ci

p
Þ
ffiffiffiffiffi
zwt

p
uwtþ1;

(2)

As a result, the covariances of exchange rates are implied in the model,
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Xii;t ¼ Vart log
Xi;tþ1
Xi;t

� �
¼ 2jzt þDiiz

w
t ;

Xij;t ¼ Vart log
Xi;tþ1
Xi;t

; log
Xj;tþ1
Xj;t

� �
¼ jzt þDijz

w
t ;

(3)

wherein the ratio zt
zwt
of state variables characterizes the disparity of the inter-

national correlation in FXmarkets. Countries of similar (dissimilar) loadings
ci have lower (higher) correlations of their exchange rates against the USD
when this ratio is higher. The short-term risk-free rate is given by the condi-

tional expected growth rate, ri;t ¼ �logEt
Mi;tþ1
Mi;t

h i
. In the absence of arbi-

trages, the covered interest rate parity (CIP) holds between spot and
forward exchange rates, Xi;tð1þ r0;tÞ ¼ Fi;tð1þ ri;tÞ, so the exchange rate

forward discount equals the interest rate differential,

fdi;t ¼ log
Xi;t

Fi;t
¼ ri;t � r0;t ¼

1

2
ðc0 � ciÞzwt : (4)

We consider a net-zero currency strategy of long currency i, shortUSD from t
to tþ 1.Given completemarkets (2) andCIP (4), the realized and conditional
expected returns in USD of this strategy are

CTi;tþ1 � log
Xi;tþ1
Xi;t

þ fdi;t

¼ ffiffiffiffiffiffiffi
jzt
p ðu0tþ1 � uitþ1Þ þ ð

ffiffiffiffiffi
c0

p
�

ffiffiffiffi
ci

p
Þ ffiffiffiffiffizwtp uwtþ1 þ

1

2
ðc0 � ciÞzwt ;

(5)

ECTi;t � Et½CTi;tþ1� ¼ fdi;t ¼ ri;t � r0;t: (6)

This result shows that the exchange rate forward discount is an unbiased
predictor of the future currency return.
Empirically, the international correlation risk factor is constructed as fol-

lows. First, currency pairs fijg are sorted into 10 bins (deciles) based on the

conditional correlation qt
Xi;tþ1
Xi;t

;
Xj;tþ1
Xj;t

� �
of the exchange rates. The disparity in

the international correlation FXCt is measured by the difference between the
average conditional correlation in the top and bottom deciles. The exposure

bk
FXC of a currency k to the international correlation risk factor is quantified

by the slope coefficient in the regression of the exchange rate growth
Xk;tþ1
Xk;t

on

the innovations DFXCtþ1 � FXCtþ1 � FXCt. Finally, the mimicking port-
folio HMLCt of the international correlation risk factor is constructed by

sorting currencies into bins based on their exposures fbk
FXCg, and taking

equally weighted long positions in currencies in the top (FXCB4) and short
positions in currencies in the bottom (FXCB1) bin. The realized return of the
mimicking portfolio HMLCtþ1 from t to t þ 1 is
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HMLCtþ1 ¼
P

i2FXCB4
CTi;tþ1 �

P
i2FXCB1

CTi;tþ1;

or
hHMLC
i ¼ 1 if i 2 FXCB4;

hHMLC
i ¼ �1 if i 2 FXCB1;

8<:
(7)

where CTi;tþ1 denotes the realized currency return (5), and hHMLC
i the port-

folio weight (up to a normalization constant).
The realized return of the CSCAR-mimicking portfolio is

CSCARtþ1 ¼
XN
i¼1

hCSCARi;t CTi;tþ1; with hCSCARi;t ¼ ðX�1t fdtÞi; (8)

where Xt is the exchange rate conditional covariance matrix (3), and fdt the
forward discounts (4).
By construction, HMLC (7) always assigns an equal absolute (long or

short) weight to every currency that contributes to the strategy (i.e., curren-
cies in the top and bottom terciles), and zero weight to other currencies.
Conceptually, currencies contributing to HMLC are determined based on
the covariation between the movements in currency k’s values Xk;tþ1 and in
the international correlation FXCtþ1. As uwtþ1 is the only shock common to
these movements, the composition ofHMLC (7) depends principally on the
exposures of currency values and the international correlation to the first
global shock uwtþ1. On the other hand, CSCAR (8) allows for weights distrib-
uted among all available currencies, depending on the covariance matrix Xt

(3) as well as the forward discount fdt (4). Both global, uwtþ1, and country-
specific shocks, fuitþ1g, contribute to the covariance matrix, and the compo-
sition ofCSCAR (8). These differences in the portfolio weight determination
implies different factor returns and pricing properties of HMLC and
CSCAR.

4.2 Factor prices and pricing power of factors

We formalize the comparative analysis of factors based on the international
correlation (HMLC) and on covariances and spreads (CSCAR) by examin-
ing their market-based factor prices and pricing powers.

4.2.1 Market-based factor prices. The price of a risk factor quantifies the
required excess return to bear the risk of the factor, that is, the factor’s risk-
adjusted return or Sharpe ratio.We first consider amarket-based perspective,
in which factor prices are determined by a pricing kernel constructed from
currency strategies in the FX market. This pricing kernel is the unique pro-
jector of the SDF on the space of currency returns (Hansen and Jagannathan
1991).
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In the model, the forward discounts equal the conditional expected cur-
rency returns (6). Note that the conditional covariancematrixXt of exchange

rate growths
Xi

tþ1
Xtþ1

is also the conditional covariancematrix of realized currency

returns CTi;tþ1 (5). Hence, the N� 1 portfolio weight vector (8) of CSCAR

can be written as

hCSCARt ¼ X�1t Et½CTtþ1� ¼ VartðCTtþ1;CTtþ1Þ�1Et½CTtþ1�;
where N� 1 vector CTtþ1 denotes a N realized currency returns
fCTi;tþ1g; i 2 f1; . . . ;Ng. This expression shows that hCSCARt are the optimal
weights of the mean-variance efficient portfolio in FX markets. As a result,
CSCAR delivers the highest Sharpe ratio among all FX strategies, including
HMLC and the standard carry factor CAR. CSCAR perfectly negatively
correlates with and represents the Hansen-Jagannathan minimum-variance,
that is, the unique pricing kernel linear in currency returns. Since HMLC is
another currency strategy, this result implies that in the USD denomination,
HMLC offers a lower Sharpe ratio and a higher pricing error thanCSCAR in
pricing FX returns.

4.2.2 Pricing power in two specific limits. The above finding on the opti-
mality of CSCAR in pricing assets on the FX markets represents the U.S.
SDF projected on the return space of currency strategies. CSCAR therefore
has the highest correlation with the U.S. SDF among all currency strategies.
In the current model, as SDFs of all countries are specified (1), we can

directly compute, verify, and analyze the model-implied correlation between
the U.S. SDF and HMLC and CSCAR factors. This analysis exhibits how
information about first and second moments of currency returns are com-
bined to formulate CSCAR, in difference with the formulation of HMLC
and CAR. It also reconfirms the outperformance of CSCAR over other FX
factors explicitly in two limits of interest, namely, the large and small inter-
national correlation parity

zwt
zt
(3). Note that the correlation between a factor

and SDF can be either positive (hedge factor) or negative (risk factor). In
what follows we are interested in the absolute value of this correlation.
Small international correlation disparity: In this limit, we can obtain a

power series expansion in the small ratio
zwt
zt
for all pricing quantities in the

model. In the leading order of approximation, the conditional correlation
between a factor return Ftþ1 2 fCSCARtþ1;HMLCtþ1g and the U.S. SDF
is
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Corrt Ftþ1;
M0;tþ1
M0;t

� �
¼ �

PN
i¼1

hFi;tffiffiffiffiffiffiffiffiffiffiffi
1þ d

j

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½
PN
i¼1

hFi;t�
2 þ

PN
i¼1
ðhFi;tÞ

2

s ; (9)

where hFi;t denotes the portfolio composition of factor Ftþ1.
The international correlation risk factor assigns equal weights but with

opposite signs to the contributing currencies in the top and bottom terciles
(7). As a result, the sum of portfolio weights associated with HMLC, and
hence, its correlation (9) with the U.S. SDF approach zero in the limit of

small international correlation disparity, Corrt HMLCtþ1;
M0;tþ1
M0;t

� �
	 0.

Intuitively, when there is little disparity in international correlation, a strategy
based on the correlation disparity like HMLC receives little signal, resulting
in a factor of weak pricing power in that limit.
In contrast, asCSCAR assigns heterogeneous weights to all currencies, the

sum of CSCAR portfolio weights and its correlation with the U.S. SDF
remain nonzero in the limit of small international correlation disparity

jCorrt CSCARtþ1;
M0;tþ1
M0;t

� �
j > 0. Intuitively, this is because CSCAR employs

signals from both FX covariances and spreads, the latter is characterized by
forward discounts (6) and remain strictly heterogeneous across different for-
eign currencies i.11 The resultant CSCAR correlates more strongly with the
U.S. SDF and has a stronger pricing power in the USD denomination than
does HMLC in the limit of small international correlation disparity.
Large international correlation disparity: In this limit, we can also explicitly

compare the performance ofHMLC andCSCAR. Intuitively, when zwt 
 zt,
the exposure of a currency i to the international correlation disparity FXCtþ1
is determined principally by the loading differential ð

ffiffiffiffiffi
c0

p
�

ffiffiffiffi
ci

p
Þ in the dom-

inant term in (5). As a result, HMLC (7) assigns largest (long and short)
weights to currencies that has extreme (largest and smallest) loadings ci.
However, the composition of HMLC is confined to a set of equal absolute
weights. Such a constraint places a lower bound on the volatility thatHMLC
can achieve, therefore an upper bound on its Sharpe ratio because all cur-
rency premiums remain finite in the limit of zwt 
 zt. A similar argument
applied on the carry strategy shows that the Sharpe ratio of CAR is also
subject to an upper bound.
In the same limit, the dynamics of all exchange rates are dominated by the

common global shock uwtþ1 (2). Hence, exchange rates in every pairXi,Xj are
either almost perfectly correlated (if ci � c0 and cj � c0 have the same sign) or
almost perfectly negatively correlated (if ci � c0 and cj � c0 have different

11 State variable zwt is a commonmultiplicative factor in (4), so it does not influence the heterogeneity in the forward
discounts and the associated portfolio weights of CSCAR.
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signs). By taking appropriate positions in these highly (positively or nega-
tively) correlating currencies, one can formulate currency strategies of very
small volatilities. Because heterogeneous currency premiums (6), (4) do not
cancel each other in this formulation, these currency strategies have a high
Sharpe ratio. This argument shows thatCSCAR, as amean-variance optimal
strategy in FXmarkets, necessarily has a high Sharpe ratio, and thus, strictly
dominates the limited Sharpe ratios ofHMLC andCAR established earlier in
the same limit. The following proposition summarizes the comparative statics
of HMLC and CSCAR in the benchmark model of the international
correlation.
Proposition 1.

(i) CSCAR represents the unique minimum-variance pricing kernel of FX
markets, hence, offers the highest Sharpe ratio in the USD denomination
among all traded currency strategies.
(ii)CSCAR has a higher correlationwith themodel’s full U.S. SDF, hence,

a higher power in pricing traded financial assets than HMLC in the USD
denomination in both limits of large and small FX correlation disparity.
(iii) As we explained earlier, the general optimality result (i) implies a

specific result (ii) in the benchmark model. Several further observations
that place CSCAR in light of a broader class of models are in order.

4.2.3 Discussion. First, the second global shock ugtþ1 has an identical price
in all currencies (1). This eliminates ugtþ1 from exchange rates (2), generates a
negative relationship between currency returns and exposures bFXC to the
international correlation risk, and is a key feature of the benchmarkmodel by
Mueller, Stathopoulos, and Vedolin (2017). This feature also implies that
exchange rates highly (positively or negatively) correlate in the limit of a large
FX correlation disparity, implying that the well-diversified CSCAR factor
achieves a superior Sharpe ratio. In retrospect, working with the benchmark
model enables an illustration of CSCAR’s efficiency and outperformance
versus the model’s characteristic factor HLMC, while upholding the same
key feature of the FX correlation risk.
Second, beyond the benchmark model, the more general framework by

Lustig, Roussanov, and Verdelhan (2014) replaces a single zt by multiple
country-specific local state variables fzitg. Such a diverse set of country-
specific shocks not only weakens the relationship and interpretation of a
FX correlation risk factor with currency returns but also enriches the impli-
cations for efficiency of FX strategies. Conceptually, forward discounts cease
to exactly equal currency risk premiums,

Et½CTi;tþ1� ¼ fdi;t � vðzit � z0t Þ; (10)

or CSCAR is not strictly the minimum-variance SDF in FX markets.
Practically, however, the calibration in Lustig, Roussanov, and Verdelhan
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(2014) shows that parameter v, that is, the difference between currency risk
premiums and forward discounts, is not significantly different from zero
when the model is confronted by FX data. Furthermore, when the global
state variable zwt dominates the local counterparts fzitg, this difference is also
small. Either case indicates the efficiency and optimality of CSCAR as (ap-
proximately) the Hansen-Jagannathan SDF projector on the FX market
return space. Third, CSCAR’s construction centers on the combined effi-
ciency of spreads and covariances. With respect to spreads, strategies exam-
ined in Lustig, Roussanov, and Verdelhan (2014) and Mueller,
Stathopoulos, and Vedolin (2017), including the carry, dollar carry, uncon-
ditional HML carry,12 and the FX correlation HMLC (7), all assign equal
weights to the currencies contributing to these strategies.CSCAR’s portfolio
weights vary quantitatively with currencies’ spreads and keep CSCAR’s
expected excess return away from zero in states where signals from FX
correlations are weak as in the premise of Proposition 1. With respect to
covariances, whenever FX markets have enough assets to reasonably diver-
sify the portfolio risks CSCAR delivers a high Sharpe ratio.
In sum, a necessary (and sufficient) condition for the dominance of

CSCAR over other FX factors is that forward discounts equal expected
currency premiums. In the no-arbitrage multifactor framework of Lustig,
Roussanov, and Verdelhan (2014), parametric values calibrated from FX
data do not statistically significantly rule out this equality. Importantly, in
this framework, the samemodel parameters enter themodel-implied forward
discounts and expected currency premiums, which justifies the employment
of the former as a signal to achieve the efficiency and pricing power in FX
markets via the construction of the CSCAR.

5. Conclusion

We adjust the Carry (CAR) factor to account for the covariance matrix of
exchange rate growths (covariance adjustment) and the size of forward dis-
counts (spread adjustment). We call this factor the Covariance- and Spread-
adjusted Carry (CSCAR).
Using various sets of test assets and data of 15 developed and 29 developed

and emerging currencies from 1984 to 2016, we find that that the single-factor
CSCAR model is able to price the cross-section of average FX market
returns. In contrast, carry factors that do not use all the information of the
covariancematrix and forward discounts are unable to price the cross-section

12 The carry is the usual portfolio strategy taking long (short) positions in foreign currencies against theUSDbased
on whether foreign interest rates are higher (lower) than the U.S. interest rate. The dollar carry takes a long
(short) position in an equally weighted basket of foreign currencies against theUSDwhen the average of foreign
interest rates is higher (lower) than the U.S. interest rate. The unconditionalHML carry is similar to the carry,
but is based on the time-series averages of interest rates, and hence, do not feature rebalancing of the portfolios.

Pricing Implications of Covariances and Spreads in Currency Markets

35

D
ow

nloaded from
 https://academ

ic.oup.com
/raps/advance-article/doi/10.1093/rapstu/raab019/6325097 by U

niversity Libraries | Virginia Tech user on 19 January 2022



ofFX returns.Moreover, popular single- andmultifactormodels do not span
the CSCAR factor and are rejected in our tests.
We further show that the conditional covariance matrix of exchange rate

growths and forward discounts vary through time, and because they are
important determinants of conditional expected returns (i.e., pricing), FX
market returns are predictable 1 to 18 months ahead. We also document a
substantial time-series variation in the conditional covariance matrix of ex-
change rate growths and forward discounts, and it is critical to account for
this variation to price assets. Future empirical research should investigate the
underlying economic fundamentals that drive this time-series variation.
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A Technical Details

A.1 Sequentially Efficient GMM Estimation

This section provides details on the estimation of our factor pricing models in Section 3 using

sequentially efficient GMM(Hansen 1982; Cochrane 2005; Shanken and Zhou 2007).We refer to

the set of ð1þ KÞNmoment conditionsE½
1

Ft

 !
� ðRt � a� bFtÞ� ¼ 0 as the time-series pricing

equations, and theNmoment conditionsE½Rt � c01fN�1g � bc� ¼ 0 as the cross-sectional pricing

equations. We first solve

A1gTðbbÞ ¼ 0 with A1 ¼

IK 0 0

0 Ið1þKÞN 0

0 0 11�N

0 0 bb 0

0BBBBB@

1CCCCCA;

where Ix is an identity matrix with dimension x � x and gTðbbÞ ¼ 1
T

PT
t¼1

htðbbÞ with

htðbbÞ ¼
Ft � l

1

Ft

0@ 1A� ðRt � ba � bbFtÞ

Rt �bc01fN�1g � bbbc

0BBBBBB@

1CCCCCCA, is the sample estimate of g(b). The closed-form solution

of bb is

bl ¼ E½Ft�

ba 0
bb

0@ 1A ¼ E
1

Ft

0@ 1A 1 F0tð Þ

24 35�1E 1

Ft

0@ 1AR0t

24 35
bc0
bc

0@ 1A ¼ 11�N

bb0
0@ 1Að 1N�1 bb Þ
24 35�1 11�N

bb 0
0@ 1AE½Rt�;

with E½x� being estimated using the sample average 1
T

PT
t¼1

xt. Note that we choose A1 to fully

separate the estimate of l,
a

b

 !
, and

c0

c

 !
. Therefore, the point estimate of bb is identical to the

estimate in two-stage time-series and cross-sectional regressions (Fama andMacBeth 1973). The

covariance matrix of bb and gTðbbÞ are estimated as follows:

CovðbbÞ ¼ 1

T
½A1DðbbÞ��1A1SðbbÞð½A1DðbbÞ��1A1Þ0

CovðgTðbbÞÞ ¼ 1

T
Ið2þKÞN �DðbbÞ½A1DðbbÞ��1A1ÞSðbbÞðIð2þKÞN �DðbbÞ½A1DðbbÞ��1A1Þ0;
�

with the ½Kþ ð2þ KÞN� � ½Kþ ð1þ KÞð1þNÞ� matrix of partial derivatives
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DðbbÞ ¼ @gTðbbÞ
@bb 0 ¼

�IK 0 0 0 0

0 �IN �E½F0t� � IN 0 0

0 �E½ft� � IN �E½Ft � F0t� � IN 0 0

0 0 �bc 0 � IN �1fN�1g �bb

0BBBBB@

1CCCCCA;

and followingNewey andWest (1987) the ½Kþ ð2þ KÞN� � ½Kþ ð2þ KÞN�matrixSðbbÞ, which
is a consistent estimate of the covariance matrix E½gðbÞgðbÞ0�,

SðbbÞ ¼ 1

T

XT
t¼1

htðbbÞhtðbbÞ0 þXL
l¼1

1� l

1þ L

� �
1

T� l

XT
t¼1þl

�
htðbbÞht�lðbbÞ0 þ ht�lðbbÞhtðbbÞ0�;

with L ¼ T1=4. Note that the estimate SðbbÞ takes into account cross- and autocorrelations and

heteroscedasticity. In a second step, we solve

A2gTð
bbb Þ ¼ 0 with A2 ¼

IK 0 0

0 Ið1þKÞN 0

0 0 D�ðbbb Þ0S�ðbbÞ�1
0BBB@

1CCCA;
where the N� ð1þ KÞ matrix D�ðbbb Þ ¼ ð�1fN�1g �bbb Þ is the N� ð1þ KÞ lower, right sub-
matrix ofDðbbbÞ, andS�ðbbÞ is theN�N lower, right submatrix ofSðbbÞ.We only adjust theweights

on the set of theN cross-sectional pricing equations using the information of the first-stage error

covariance matrix SðbbÞ. This is the idea of sequentially efficient GMM. The alternative weighting

matrix ~A2 ¼ Dðbbb Þ0SðbbÞ�1 is theoretically more efficient than A2, but in practice inverting the

matrix SðbbÞ can be difficult to do, and estimation errors can lead to nonrobust results. Shanken

and Zhou (2007) show thatmore robust estimates are obtained with sequentially efficient GMM,

that is, estimating (l, a, and) b in a consistent but inefficient way, and then, given the estimates bb,
estimate c0 and c using an efficient weighting matrix. The closed-form solution of

bbb is

bbl ¼ bl; bba ¼ ba; bbb ¼ bb
bbc0 bbc� �

¼ �
�
D�ðbbb Þ0S�ðbbÞ�1D�ðbbb Þ��1D�ðbbb Þ0S�ðbbÞ�1E½Rt�:

CovðbbbÞ and CovðgTð
bbb ÞÞ are analogous to CovðbbÞ and CovðgTðbbÞÞ simply be replacing A1 by A2

and bb by
bbb .CovðbbaÞ is given by theN�N submatrix between rowsKþ 1 andKþN and columns

K þ 1 and K þ N of CovðbbbÞ. Varðc0Þ is equal to the element on row Kþ ð1þ KÞNþ 1 and

columnKþ ð1þKÞNþ 1 ofCovðbbbÞ.VarðbbckÞ is the element on rowKþ ð1þ KÞNþ 1þ k and

columnKþ ð1þ KÞNþ 1þ k ofCovðbbbÞ.VarðbblkÞ is equal the element on row k and columnkof

CovðbbbÞ. Covðbblk;
bbckÞ is equal to the element on row k and column Kþ ð1þKÞNþ 1þ k of

CovðbbbÞ. Covðbba�Þ, with bba� ¼ E½Rt� � bbc01fN�1g � bbbbbc , is the N � N lower, right submatrix of

CovðgTð
bbb ÞÞ.
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B. Tables

Table B1

Portfolio weights of CSCAR

A. Fifteen devel-
oped currencies

Mean Median SD Skew Kurt Min Max fdi

Italy 0.227 0.064 0.470 1.712 8.798 �1.249 2.574 4.03
Norway 0.217 0.076 0.410 2.832 13.518 �0.333 2.999 2.10
United Kingdom 0.174 0.113 0.329 0.626 8.008 �1.489 1.659 1.76
New Zealand 0.170 0.106 0.266 2.597 14.936 �0.435 2.163 3.84
Australia 0.132 0.111 0.243 �0.275 4.674 �0.916 0.787 3.19
Sweden 0.039 0.020 0.315 �2.198 31.438 �2.739 1.777 1.46
Belgium 0.033 0.042 0.287 0.160 6.008 �1.082 1.208 0.67
Denmark 0.007 �0.026 0.244 2.010 17.325 �1.180 1.927 0.74
Canada 0.002 �0.020 0.318 0.763 8.972 �1.619 1.450 0.80
France �0.043 �0.026 0.211 �0.637 9.917 �1.215 0.903 1.55
Euro �0.073 �0.051 0.124 �2.600 22.313 �1.013 0.466 �0.29
Netherlands �0.088 �0.050 0.198 �1.294 7.618 �1.006 0.568 �0.68
Germany �0.123 �0.057 0.246 �2.061 8.537 �1.362 0.305 �0.93
Switzerland �0.197 �0.137 0.278 0.221 16.500 �1.836 1.968 �1.72
Japan �0.258 �0.198 0.301 �1.576 6.502 �1.624 0.508 �2.49

B. Twenty-nine de-
veloped and
emerging currencies

Mean Median SD Skew Kurt Min Max fdi
Mexico 0.339 0.163 0.503 1.620 5.645 �0.747 2.423 6.40
Portugal 0.333 0.291 0.322 0.913 4.001 �0.327 1.465 5.36
Brazil 0.311 0.273 0.285 1.215 5.394 �0.350 1.355 9.26
Greece 0.311 0.266 0.397 2.662 13.622 �0.174 2.274 4.78
Spain 0.237 0.193 0.292 0.183 5.980 �1.082 1.351 4.85
Iceland 0.210 0.135 0.238 1.358 4.797 �0.127 1.119 6.08
South Africa 0.199 0.124 0.328 1.829 8.273 �0.642 1.751 6.55
Hungary 0.190 0.105 0.341 1.625 9.036 �1.101 1.845 5.65
New Zealand 0.155 0.093 0.272 1.995 11.105 �0.505 1.946 3.84
Italy 0.108 0.039 0.353 1.128 6.177 �1.092 1.643 4.03
United Kingdom 0.067 0.023 0.294 1.144 11.850 �1.490 1.977 1.76
Norway 0.050 0.006 0.315 3.223 21.944 �1.112 2.466 2.10
Australia 0.049 0.023 0.240 0.338 5.951 �0.896 1.337 3.19
Belgium 0.030 0.027 0.205 �0.152 3.754 �0.648 0.597 0.67
Ireland 0.018 �0.009 0.266 0.128 5.002 �0.985 0.920 2.03
Poland 0.016 �0.010 0.192 2.099 16.545 �0.708 1.302 2.51
Taiwan 0.009 �0.007 0.223 2.440 14.521 �0.629 1.270 �0.85
South Korea 0.001 0.008 0.202 �0.277 4.068 �0.664 0.578 1.27
Canada �0.006 �0.011 0.320 0.639 9.263 �1.406 1.821 0.80
Czech Republic �0.023 �0.024 0.258 0.492 6.443 �1.028 1.029 0.87
Sweden �0.023 �0.003 0.278 �1.317 14.880 �2.076 1.463 1.46
Denmark �0.034 �0.036 0.180 2.228 18.435 �0.755 1.440 0.74
Euro �0.061 �0.045 0.103 �0.064 8.376 �0.457 0.481 �0.29
Singapore �0.069 �0.021 0.237 �2.614 17.841 �1.870 0.696 �1.17
France �0.088 �0.062 0.210 �1.978 12.296 �1.314 0.540 1.55
Netherlands �0.126 �0.105 0.192 �0.448 9.120 �1.035 0.811 �0.68
Germany �0.133 �0.099 0.210 �2.233 12.339 �1.344 0.300 �0.93
Switzerland �0.180 �0.111 0.263 �1.086 5.899 �1.437 0.682 �1.72
Japan �0.206 �0.163 0.276 �1.470 7.036 �1.794 0.352 �2.49

Summary statistics of portfolio weights hCSCARt ¼ ~X
�1
t fdt.

CSCAR incorporates information from both the robust covariance matrix of exchange rate growths and the
forward discounts. fdt is the vector of forward discounts of all exchange rates against the USD, and ~X t is a
robust version of the conditional covariancematrixXt of all exchange rate growths at the end ofmonth t. fdi (in
the last column) is the average annualized forward discount in percentage points of the exchange rate between
currency i and USD. The data of 15 developed countries (panel A) and 29 developed and emerging currencies
(panel B) are from January 1984 to February 2016.
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Table B2

Single-factor CSCAR pricing model

A. Fifteen developed
currencies

5 IntP 5 Mom P & 5
ValP

15
Assets

6 DB & 4
FXCB

25 assets 11
assets

36 assets

bbc0 0.68 �1.02 �0.85 1.06 0.85 1.62* 0.71
(.36) (-.51) (-.51) (.62) (.77) (1.87) (1.44)bbcCSCAR 9.01* 9.39** 9.59*** 10.49 8.34*** 6.40*** 7.14***
(2.48) (2.48) (3.23) (.93) (3.13) (3.59) (4.21)

R2 (%) 90.48 35.46 45.55 15.22 31.47 83.69 53.33bbcCSCAR � bblCSCAR 0.61 1.00 1.20 2.09 �0.06 �2.00* �1.26
(.20) (.31) (.54) (.20) (.03) (2.20) (1.32)

Joint test of cross-sectional
regression bba� ¼ 0:
v2-test 0.69 14.61 15.98 8.75 27.07 10.45 45.57
(p-value) (.95) (.10) (.31) (.46) (.30) (.40) (.11)
Joint test of time-series re-
gression bba ¼ 0:
F-test 0.17 1.46 1.06 1.09 1.03 1.38 1.19
(p-value) (.97) (.15) (.39) (.37) (.43) (.18) (.22)

B. Twenty-nine developed
and emerging currencies

5 IntP 5 MomP 15 6 DB 25 11 36
& 5 ValP assets & 4 FXCB assets assets assetsbbc0 �0.39 �1.08 �1.34 2.56* 1.32 0.33 0.03

(-.22) (-.52) (-.83) (2.26) (1.43) (.67) (.10)bbcCSCAR 10.22* 11.71** 12.07*** 5.62 10.44***9.68***10.57***
(2.42) (2.42) (3.30) (.74) (3.32) (4.44) (5.39)

R2 (%) 53.88 29.59 44.91 6.65 29.27 96.07 77.39bbcCSCAR � bblCSCAR �0.61 0.87 1.24 �5.21 �0.39 �1.15 �0.26
(.18) (.19) (.42) (.76) (.16) (1.54) (.19)

Joint test of cross-sectional
regression bba� ¼ 0:
v2-test 7.25 11.36 17.18 11.41 31.07 11.53 47.39*
(p-value) (.12) (.25) (.25) (.25) (.15) (.32) (.08)
Joint test of time-series re-
gression bba ¼ 0:
F-test 1.44 1.19 1.19 1.49 1.21 1.03 1.20
(p-value) (.21) (.30) (.28) (.14) (.22) (.42) (.21)

Estimates of the cross-sectional pricing equation E½Rt� ¼ c01fN�1g þ bc using sequentially efficient GMM for
CSCAR as a single pricing factor. Appendix A.1 provides details about the estimation. CSCAR factor return,P

i h
CSCAR
i;t CTi;tþ1, h

CSCAR
t ¼ ~X

�1
t fdt, incorporate the informationofboth robust covariationbetween exchange

rate growths and the forward discounts. R2 is the model fit of the cross-sectional pricing equation. v2-test is the
joint test statistic of a�i ¼ 0 for all test assets i 2 f1; . . . ;Ng. F-test is the joint test statistic of ai ¼ 0 for all test
assets i 2 f1; . . . ;Ng. t-statistics are in parentheses below coefficient estimates, and p-values are below the v2-
and F-test statistics. Errors are estimated taking into account auto- and cross-sectional correlations and hetero-
scedasticity according to Newey andWest (1987). The data are our set of 15 developed countries (panel A) and
29 developed and emerging currencies (panel B) from January 1984 to February 2016.
*p < 1;
**p < .05;
***p < .01.
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Table B3

Carry and dollar carry (without market timing)

Fifteen developed
currencies

25 Test assets Thirty-six test assets

bbc0 3.46** 0.27 1.35 1.69*** 1.12** 1.09**
(2.64) (.19) (1.06) (3.48) (2.26) (2.37)bbcDOL �2.96 �0.39 �1.46 �1.44 �0.78 �0.75
(�1.52) (�.20) (�.76) (�.93) (�.53) (�.50)bbcCAR 4.36** 4.06**
(2.47) (2.50)bbcDDOL 5.13** 3.82**

(2.58) (2.55)bbcNSCAR 4.84*** 3.71***
(2.96) (2.96)

R2 (%) 19.83 25.11 35.30 38.58 40.64 45.77bbcDOL � bblDOL �4.66*** �2.08 �3.15** �3.13** �2.48* �2.44*
(3.02) (1.27) (2.08) (2.63) (2.01) (2.00)bbcCAR � bblCAR �0.87 �1.16
(.94) (.96)bbcDDOL � bblDDOL 0.04 �1.27

(.02) (1.44)bbcNSCAR � bblNSCAR �0.92 �2.06**
(.78) (2.05)

Joint test of cross-sectional
regression bba� ¼ 0:
v2-test 39.75** 37.25** 33.13* 63.26*** 62.26*** 59.21***
(p-value) (.02) (.03) (.08) (.00) (.00) (.00)
Joint test of time-series re-
gression bba ¼ 0:
F-test 1.52* 1.39 1.21 1.93*** 1.74*** 1.74***
(p-value) (.05) (.10) (.23) (.00) (.01) (.01)
Abnormal return of
CSCAR in the cross-sec-
tion (a�CSCAR) and time-se-
ries (aCSCAR):
a�CSCAR 5.42*** 6.66*** 5.36***

(3.67) (4.16) (3.50)
aCSCAR 6.51*** 7.43*** 5.60***

(4.69) (4.62) (4.23)

This table reports estimates of the cross-sectional pricing equation E½Rt� ¼ c01fN�1g þ bc using sequentially
efficient GMM. CAR is the equally weighted Carry factor; NSCAR further adjusts for the spread in forward
discounts at a constant notional value; DOL invests equally in all foreign currencies against the USD; and
DDOL takes a long or short position inDOL depending on the median forward discount.R2 is the model fit of
the cross-sectional pricing equation. The v2-test is the joint test statistic of a�i ¼ 0 for all test assets
i 2 f1; . . . ;Ng. The F-test is the joint test statistic of ai ¼ 0 for all test assets i 2 f1; . . . ;Ng. t-statistics are in
parentheses below the coefficient estimates. Errors are estimated taking into account auto- and cross-sectional
correlations and heteroscedasticity according to Newey andWest (1987). The data are our set of 15 developed
countries from January 1984 to February 2016.
*p <0.1;
**p <0.05;
***p <0.01.
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Table B4

Managing volatility

Fifteen developed
currencies

Twenty-five test assets Thirty-six test assets

bbc0 2.96** 0.70 �1.09 1.19** 1.20** 0.91
(2.41) (.54) (-.64) (2.40) (2.57) (1.23)bbcDOL �2.49 �1.02 1.54 �1.10 �0.93 0.09
(�1.32) (�.51) (.66) (�.74) (�.63) (.05)bbcDDOL 6.81*** 4.43**

(3.03) (2.65)bbcCAR 4.58** 3.76**
(2.39) (2.15)bbcCARVM

10.39** 11.86* 3.45* 3.93*
(2.62) (1.85) (1.82) (1.87)bbcNSCAR 5.82** 4.21***

(2.66) (3.07)bbcNSCARVM
17.20*** 16.53** 6.32** 6.96**
(3.77) (2.22) (2.45) (2.56)bbcMOM 1.56 0.96

(1.44) (1.00)bbcVAL 4.80*** 3.78***
(3.31) (2.77)

R2 (%) 32.26 43.37 61.60 34.55 38.35 52.56
Joint test of cross-
sectional regressionbba� ¼ 0:
v2-test 32.36* 26.38 14.40 70.18*** 68.96*** 52.82***
(p-value) (.09) (.28) (.64) (.00) (.00) (.00)
Joint test of time-
series regressionbba ¼ 0:
F-test 1.47* 1.40* 0.84 1.93*** 1.94*** 1.71***
(p-value) (.07) (.10) (.68) (.00) (.00) (.01)
Abnormal return of
CSCAR in the
cross-section
(a�CSCAR) and time-
series (aCSCAR):
a�CSCAR 6.10*** 5.56*** 4.76***

(4.02) (3.46) (3.43)
aCSCAR 5.27*** 5.40*** 3.94***

(4.14) (3.97) (3.56)

This table reports estimates of the cross-sectional pricing equation E½Rt� ¼ c01fN�1g þ bc using sequentially
efficientGMM.Details about the estimation are inAppendixA.1.CAR is the equallyweightedCarry factor; the
volatility-managedCARVM adjusts for the variance ofCAR’s return;NSCAR adjusts for the spread in forward
discounts at a constant notional value; the volatility-managedNSCARV M adjusts for the variance ofNSCAR’s
return;DOL invests equally in all foreign currencies against the USD; DDOL takes a long or short position in
DOL depending on the median forward discount; MOM (momentum) sorts currencies based on the past
performance; and VAL (value) sorts currencies based on the real exchange rate. R2 is the model fit of the
cross-sectional pricing equation. The v2-test is the joint test statistic of a�i ¼ 0 for all test assets
i 2 f1; . . . ;Ng. The F-test is the joint test statistic of ai ¼ 0 for all test assets i 2 f1; . . . ;Ng. t-statistics are in
parentheses below the coefficient estimates. Errors are estimated taking into account auto- and cross-sectional
correlations and heteroscedasticity according to Newey andWest (1987). The data are our set of 15 developed
countries from January 1984 to February 2016.
*p <0.1;
**p <0.05;
***p <0.01.
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Table B5

Importance of spread and covariance adjustments

Fifteen developed
currencies

Twenty-five test assets Thirty-six test assets

bbc0 0.47 0.07 1.19 1.09** 0.94** 1.18**
(.41) (.06) (1.08) (2.39) (2.03) (2.57)bbcSCAR 4.90** 4.30***
(2.18) (2.73)bbcVSCAR 7.84*** 7.00***

(2.85) (3.83)bbcCECAR 10.22** 2.64
(2.33) (1.50)

R2 (%) 9.43 20.93 17.49 37.39 46.12 32.92bbcSCAR � bblSCAR �1.01 �1.61
(.62) (1.48)bbcVSCAR � bblVSCAR �1.34 �2.18*

(.70) (1.90)bbcCECAR � bblCECAR 3.27 �4.31***
(.86) (3.49)

Joint test of cross-sectional
regression bba� ¼ 0:
v2-test 42.04** 29.72 30.07 63.82*** 53.25**69.43***
(p-value) (.01) (.19) (.18) (.00) (.02) (.00)
Joint test of time-series re-
gression bba ¼ 0:
F-test 1.53* 1.05 1.46* 1.78*** 1.44* 1.89***
(p-value) (.05) (.41) (.07) (.00) (.05) (.00)
Abnormal return of
CSCAR in the cross-sec-
tion (a�CSCAR) and time-se-
ries (aCSCAR):
a�CSCAR 5.73*** 4.14*** 5.98***

(3.99) (3.24) (4.27)
aCSCAR 6.22*** 4.05*** 5.16***

(4.76) (3.50) (4.65)

This table reports estimates of the cross-sectional pricing equation E½Rt� ¼ c01fN�1g þ bc using sequentially
efficient GMM. Details about the estimation are in Appendix A.1. CAR is the equally weighted Carry factor;
SCAR adjusts for the spread in forward discounts and times the market based on the forward discounts;
VSCAR further adjusts for the variances (but not the correlations) of currency returns; and CECAR adjusts
for the correlations of currency returns and the sign of the forward discounts. R2 is the model fit of the cross-
sectional pricing equation. The v2-test is the joint test statistic of a�i ¼ 0 for all test assets i 2 f1; . . . ;Ng. The F-
test is the joint test statistic of ai ¼ 0 for all test assets i 2 f1; . . . ;Ng. t-statistics are in parentheses below
coefficient estimates, and p-values are below the v2- andF-test statistics. Errors are estimated taking into account
auto- and cross-sectional correlations and heteroscedasticity according toNewey andWest (1987). The data are
our set of 15 developed countries from January 1984 to February 2016.
*p <0.1;
**p <0.05;
***p <0.01.
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Table B6

Importance of market timing and robust estimate of covariance matrix

Fifteen developed
currencies

Twenty-five test
assets

Thirty-six test
assets

bbc0 1.37 1.28 1.78* 1.09** 0.95** 1.34***
(1.27) (1.21) (1.73) (2.38) (2.05) (2.94)bbcCSCARCR
7.69*** 4.26**
(2.99) (2.47)bbcCSCARCV

8.77*** 6.33***
(3.29) (3.49)bbcCSCARfull

10.86 9.94*
(1.68) (1.98)

R2 (%) 24.05 29.34 7.29 36.65 43.10 37.23bbcCSCARCR
� bblCSCARCR

1.80 �1.62
(.86) (1.44)bbcCSCARCV

� bblCSCARCV
0.57 �1.87*
(.29) (1.71)bbcCSCARfull

� bblCSCARfull
6.00 5.08
(.93) (.90)

Joint test of cross-sectional
regression bba� ¼ 0:
v2-test 31.70 28.50 48.38*** 66.63*** 64.01***71.45***
(p-value) (.13) (.24) (.00) (.00) (.00) (.00)
Joint test of time-series re-
gression bba ¼ 0:
F-test 1.35 1.16 2.09*** 1.86*** 1.83*** 2.13***
(p-value) (.13) (.28) (.00) (.00) (.00) (.00)
Abnormal return of
CSCAR in the cross-sec-
tion (a�CSCAR) and time-se-
ries (aCSCAR):
a�CSCAR 4.82*** 3.11*** 5.53***

(3.88) (3.14) (3.38)
aCSCAR 4.96*** 2.79*** 7.65***

(4.75) (4.22) (4.81)

This table reports estimates of the cross-sectional pricing equation E½Rt� ¼ c01fN�1g þ bc using sequentially
efficient GMM. Details about the estimation are in Appendix A.1. CAR is the equally weighted Carry factor;
CSCAR adjusts for both robust covariation between exchange rate growths and the forward discounts;
CSCARCR further features a constant notional value and CSCARCV features a constant volatility; and
CSCARfull is similar to CSCAR but employs the original (nonrobust) covariation between exchange rate
growths. R2 is the model fit of the cross-sectional pricing equation. v2-test is the joint test statistic of a�i ¼ 0
for all test assets i 2 f1; . . . ;Ng. F-test is the joint test statistic of ai ¼ 0 for all test assets i 2 f1; . . . ;Ng. t-
statistics are in parentheses below coefficient estimates, and p-values are below the v2- and F-test statistics.
Errors are estimated taking into account auto- and cross-sectional correlations and heteroscedasticity according
toNewey andWest (1987). The data are our set of 15 developed countries from January 1984 toFebruary 2016.
*p <0.1;
**p <0.05;
***p <0.01.
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Table B7

Volatility, illiquidity, and skewness

Fifteen developed
currencies

Twenty-five test
assets

Thirty-six test
assets

bbc0 3.12** 2.84** 1.78 1.58*** 1.49*** 1.56***
(2.35) (2.27) (1.34) (3.03) (3.13) (3.24)bbcDOL �2.80 �2.59 �1.89 �1.36 �1.34 �1.20
(-1.44) (-1.40) (-1.00) (-.89) (-.89) (-.83)bbcVOL �4.09 �1.68
(-.96) (-.46)bbcILL �1.90 �1.62

(-.39) (-.48)bbcSKEW �13.41** �11.72***
(-2.69) (-3.20)

R2 (%) 6.41 4.56 23.90 31.66 31.68 44.25bbcDOL � bblDOL �4.49*** �4.28*** �3.58** �3.06** �3.03** �2.89**
(2.92) (2.88) (2.18) (2.59) (2.68) (2.29)

Joint test of cross-sectional
regression bba� ¼ 0:
v2-test 46.57*** 50.35*** 37.47** 72.12*** 73.46*** 65.16***
(p-value) (.00) (.00) (.03) (.00) (.00) (.00)
Abnormal return of
CSCAR in the cross-sec-
tion (a�CSCAR):
a�CSCAR 6.78*** 6.97*** 5.83***

(4.45) (4.32) (3.81)

This table reports estimates of the cross-sectional pricing equation E½Rt� ¼ c01fN�1g þ bc using sequentially
efficient GMM.Details about the estimation are in Appendix A.1.DOL invests equally in all foreign currencies
against the USD; VOL characterizes unexpected changes in the global FX market volatility; ILL characterizes
unexpected changes in the global FX market illiquidity; and SKEW characterizes the global FX market skew-
ness.R2 is the model fit of the cross-sectional pricing equation. The v2-test is the joint test statistic of a�i ¼ 0 for
all test assets i 2 f1; . . . ;Ng. The F-test is the joint test statistic of ai ¼ 0 for all test assets i 2 f1; . . . ;Ng. t-
statistics are in parentheses below coefficient estimates, and p-values are below the v2- and F-test statistics.
Errors are estimated taking into account auto- and cross-sectional correlations and heteroscedasticity according
toNewey andWest (1987). The data are our set of 15 developed countries from January 1984 toFebruary 2016.
*p <0.1;
**p <0.05;
***p <0.01.
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Table B8

Downside risk and intermediary capital ratio

Fifteen developed
currencies

25 test assets 36 test assets

c 0 1.44 1.40 1.21 2.14*** 1.68*** 1.88***
(1.48) (1.41) (1.15) (4.07) (3.03) (3.44)

cMKT 11.26 7.63 9.37 �5.95 �2.62 �4.09
(1.50) (1.26) (1.46) (-1.06) (-.49) (-.81)

cDSR �0.77 �1.61 3.97 3.97
(-.21) (-.43) (1.27) (1.27)

cINT 22.06** 25.53** 9.13 7.39
(2.24) (2.30) (1.10) (.91)

R2 (%) �11.71 19.60 28.76 8.21 16.68 25.06
cMKT � E½MKT� 3.60 �0.04 1.70 �13.61** �10.29* �11.76**

(.48) (-.01) (.26) (-2.43) (-1.92) (-2.34)
cINT � E½INT� 9.77 13.25 �3.15 �4.89

(.99) (1.19) (-.38) (-.60)
Joint test of cross-sectional
regression a�j :
v2-test (a� ¼ 0) 38.18** 33.07* 30.65* 69.96*** 65.68*** 64.82***
(p-value) (.02) (.06) (.08) (.00) (.00) (.00)
Joint test of time-series re-
gression aj:
F-test (a ¼ 0) 1.49* 2.21***
(p-value) (.06) (.00)
Abnormal return of
CSCAR in the cross-sec-
tion (a�CSCAR) and time-se-
ries (aCSCAR):
a�CSCAR 5.50*** 6.34*** 5.38***
(t-test) (4.95) (5.13) (4.80)
aCSCAR 8.23***
(t-test) (4.92)

Estimates of the cross-sectional pricing equation E½Rt� ¼ c01fN�1g þ bc using sequentially efficient GMM.
Details about the estimation are in Appendix A.1. MKT is the value-weighted US stock market index, DSR
is the stockmarket downside risk factor, and INT is the traded intermediary capital risk factor.R2 is themodel fit
of the cross-sectional pricing equation. v2-test is the joint test statistic of a�i ¼ 0 for all test assets i 2 f1; . . . ;Ng.
F-test is the joint test statistic of ai ¼ 0 for all test assets i 2 f1; . . . ;Ng. t-statistics are in parentheses below
coefficient estimates, and p-values are below the v2- andF-test statistics. Errors are estimated taking into account
auto- and cross-sectional correlations and heteroscedasticity according toNewey andWest (1987). The data are
our set of 15 developed countries from January 1984 to February 2016.
*p < 1;
**p < 0.5;
***p < .01.
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Table B9

Dollar beta and FX correlation dispersion

Fifteen developed
currencies

25 test assets 11 test assets 36 test assets

bbc0 2.01* 2.83** 1.90** 1.83* 1.48*** 1.50***
(1.96) (2.27) (2.27) (1.99) (3.24) (3.15)bbcDOL �2.55 4.91 �1.26

(-1.39) (1.77) (-.85)bbcCAR 4.32** 4.15* 3.95**
(2.52) (2.01) (2.48)bbcHMLDB 2.67 4.35 2.00
(1.60) (1.36) (1.26)bbcHMLC �1.08 �0.91 �0.70

(-.72) (-.25) (-.50)
R2 (%) 14.84 4.92 70.14 68.08 37.36 31.60bbcDOL � bblDOL �4.25*** 3.22 �2.95**

(2.85) (1.24) (2.56)bbcCAR � bblCAR �0.91 �1.08 �1.28
(1.00) (.70) (1.07)bbcHMLDB � bblHMLDB �1.21* 0.47 �1.87**
(2.06) (.17) (2.42)bbcHMLC � bblHMLC 0.92 1.09 1.30

(1.58) (.32) (1.68)
Joint test of cross-sectional
regression bba� ¼ 0:
v2-test 35.27** 50.71*** 22.95*** 24.34*** 61.27*** 73.87***
(p-value) (.05) (.00) (.01) (.00) (.00) (.00)
Joint test of time-series re-
gression bba ¼ 0:
F-test 1.39 2.02*** 3.15*** 3.34*** 1.80*** 2.30***
(p-value) (.10) (.00) (.00) (.00) (.00) (.00)
Abnormal return of
CSCAR in the cross-sec-
tion (a�CSCAR) and time-se-
ries (aCSCAR):
a�CSCAR 5.04*** 5.96*** 5.54*** 7.06***

(3.71) (4.04) (3.89) (4.42)
aCSCAR 6.56*** 8.19*** 6.56*** 8.19***

(4.71) (5.04) (4.71) (5.04)

Estimates of the cross-sectional pricing equation E½Rt� ¼ c01fN�1g þ bc using sequentially efficient GMM.
Details about the estimation are in Appendix A.1. HMLDB (dollar beta factor) is a long-short strategy based
on currency loadings on theDOL factor,HMLC is a long-short strategy based on currency loadings on the FX
market correlation dispersion. R2 is the model fit of the cross-sectional pricing equation. v2-test is the joint test
statistic of a�i ¼ 0 for all test assets i 2 f1; . . . ;Ng. F-test is the joint test statistic of ai ¼ 0 for all test assets
i 2 f1; . . . ;Ng. t-statistics are in parentheses below coefficient estimates, and p-values are below the v2- and F-
test statistics. Errors are estimated taking into account auto- and cross-sectional correlations and heteroscedas-
ticity according toNewey andWest (1987). The data are our set of 15 developed countries from January 1984 to
February 2016.
*p < 1;
**p < 0.5;
***p < .01.
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Table B10

Predictive regressions

A. h ¼ 1 month
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

x1 �0.037*** �0.003*** 0.341*** 0.280*** 0.127 0.226** 0.143** 0.170*
x2 0.012 �0.000 �0.199 0.120 0.342 �0.580* �0.153 �0.242
x3 0.019*** 0.002*** �0.105 0.004 �0.285** �0.071 0.016 �0.020
x4 0.000 �0.002** 0.216 0.058 0.401*** 0.247 �0.008 �0.099
x5 0.474*** 0.013 �1.307 �1.075 �0.777 0.191 1.266 1.110
x6 0.905** 0.688*** �2.805 1.233 �2.247 �4.452 �5.128 4.704
R2 (%) 53.48 59.05 3.85 2.22 5.12 1.37 0.05 �0.05

B. h ¼ 6 months

Y 1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

x 1 �0.011*** �0.001 0.141*** 0.132*** �0.021 0.091* 0.069*** 0.019
x2 �0.001 �0.003 �0.187 0.082 0.274* �0.109 �0.099 0.208
x3 0.013*** 0.001 �0.022 �0.018 �0.090* �0.050 �0.015 �0.009
x3 0.009 �0.002 0.094 0.024 0.219** 0.047 0.053 �0.073
x5 0.307*** �0.013 0.372 0.704 0.479 0.603 �0.451 0.135
x6 0.935** 0.564*** 2.107 1.080 2.079 6.749* �1.290 8.476***
R2 (%) 34.46 42.52 6.62 2.01 11.87 9.00 2.75 3.74

C. h ¼ 12 months

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

x1 �0.004 �0.000 0.102*** 0.085*** 0.012 0.059* 0.035* 0.041
x2 �0.015 �0.004 �0.121 0.099 0.016 �0.261** �0.053 0.249***
x3 0.006** �0.000 0.023 0.027 �0.074** 0.011 �0.004 0.009
x4 0.014* �0.002 �0.020 �0.054 0.260*** 0.164** 0.046 �0.089
x5 0.179*** �0.021* 1.423** 1.177** 0.471 0.056 �0.138 �0.060
x6 0.936** 0.465*** �0.132 �1.714 2.862 9.660*** �0.206 7.021***
R2 (%) 24.45 35.40 14.36 5.10 20.16 21.47 0.45 9.94

D. h ¼ 18 months

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

x1 �0.002 �0.001 0.082*** 0.063** 0.007 0.058*** 0.019 0.045*
x2 �0.015 �0.003 �0.082 0.165 �0.084 �0.204*** �0.055 0.159**
x3 0.003 �0.001 0.053* 0.048** �0.048* 0.024 0.006 �0.007
x4 0.010 �0.004*** 0.003 0.008 0.236*** 0.110* 0.011 �0.045
x5 0.101* �0.023** 1.377** 1.095*** 0.451 0.001 0.114 �0.171
x6 0.849** 0.369*** 0.091 �0.763 2.480 8.421*** 0.442 4.744*
R2 (%) 15.45 31.65 19.50 9.52 25.70 27.01 0.11 7.62

Predictive regression Yt;tþh ¼ cconst þ ctrendtþ
P

j cjxj;t þ et. Yt;tþh ¼ 1
h

Ph
s¼1

Ytþs at h ¼ 1-, 6-, 12-, and 18-

month horizons. Predicted quantities are global FXmarket volatility ~VOL, illiquidity ~ILL and currency returns
of CSCARCR, CAR, DOL, DDOL, MOM, VAL. That is, Y:
Y1 ¼ VOLt;tþh; Y2 ¼ ILLt;tþh; Y3 ¼ CSCARCR;t;tþh,
Y4 ¼ CARt;tþh; Y5 ¼ DOLt;tþh; Y6 ¼ DDOLt;tþh; Y7 ¼MOMt;tþh, andY8 ¼ VALt;tþh. Predictors xj: x1 ¼P

i jjhi;tjj (notional value of CSCAR), x2 ¼
P

i hi;t (total exposure to risky assets of CSCAR), x3 ¼
P

i jjhi;t
�hi;t�1jj (turnover of CSCAR), x4 ¼ signðmedianffdi;tgÞ (sign of median forward discount across all curren-

cies), x5 ¼ ~VOLt (global FX market volatility), x6 ¼ ~ILLt (global FX market illiquidity). R2 (adjusted) in
percentage measures the regression fit. The data are our set of 15 developed from January 1984 to February
2016. Standard errors are calculated using Newey and West (1987) to account for heteroscedasticity and
autocorrelation.
*p < 1;
**p < 0.5;
***p < .01.
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C. Figures
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Figure C1

Single-factor CSCAR model fit: Developed currencies

This figure compares historical average returns and expected returns according to the single-factor CSCAR
model, where we use the average return of CSCAR as the factor premium. IntP,MomP, ValP, DB, and FXCB
denote, respectively, the test assets that are portfolios sorted on forward discounts, past currency returns, real
exchange rates against the USD, the dollar factor, and the FX correlation dispersion. DDOL is the dynamic
dollar factor, andCARP refers to the 10 optimized carry portfolios: CARVM, SCAR,NSCAR,NSCARVM,
SCARCV, VSCAR, CECAR, CSCAR, CSCARCR, and CSCARCV. The data are our set of 15 developed
currencies.
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Figure C2

Single-factor CSCAR model fit: All currencies

This figure compares historical average returns and expected returns according to the single-factor CSCAR
model, where we use the average return of CSCAR as the factor premium. IntP,MomP, ValP, DB, and FXCB
denote, respectively, the test assets that are portfolios sorted on forward discounts, past currency returns, real
exchange rates against the USD, the dollar factor, and the FX correlation dispersion. DDOL is the dynamic
dollar factor, andCARP refers to the 10 optimized carry portfolios: CARVM, SCAR,NSCAR,NSCARVM,
SCARCV, VSCAR, CECAR, CSCAR, CSCARCR, and CSCARCV. The data are our set of 29 developed
and emerging currencies.
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Figure C3

DOL-CAR factor model fit: Developed currencies

This figure compares historical average returns and expected returns according to the DOL-CAR factor model,
where we use the average return of DOL-CAR as the factor premium. IntP, MomP, ValP, DB, and FXCB
denote, respectively, the test assets that are portfolios sorted on forward discounts, past currency returns, real
exchange rates against the USD, the dollar factor, and the FX correlation dispersion. DDOL is the dynamic
dollar factor, andCARP refers to the 10 optimized carry portfolios: CARVM, SCAR,NSCAR,NSCARVM,
SCARCV, VSCAR, CECAR, CSCAR, CSCARCR, and CSCARCV. The data are our set of 15 developed
currencies.

Pricing Implications of Covariances and Spreads in Currency Markets

51

D
ow

nloaded from
 https://academ

ic.oup.com
/raps/advance-article/doi/10.1093/rapstu/raab019/6325097 by U

niversity Libraries | Virginia Tech user on 19 January 2022



References

Ackermann, F., W. Pohl, and K. Schmedders. 2016. Optimal and naive diversification in currency markets.
Management Science 63:3347–60.

Asness, C., T. Moskowitz, and L. Pedersen. 2013. Value and momentum everywhere. Journal of Finance
68:929–85.

Baz, J., F. Breedon, V. Naik, and J. Peress. 2001. Optimal portfolios of foreign currencies. Journal of Portfolio
Management 28:102–11.

Bekaert, G., and G. Panayotov. 2020. Good carry, bad carry. Journal of Financial and Quantitative Analysis
55:1063–94.

Bilson, J. 1984. Purchasing power parity as a trading strategy. Journal of Finance 39:715–24.

Burnside, C., M. Eichenbaum, and S. Rebelo. 2011. Carry trade and momentum in currency markets. Annual
Review of Financial Economics 3:511–35.

Chinn, M., and H. Ito. 2006. What matters for financial development? Capital controls, institutions, and
interactions. Journal of Development Economics 81:163–92.
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