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A large empirical literature extends the seminal carry (CAR) factor analysis
of Lustig and Verdelhan (2007) and Lustig, Roussanov, and Verdelhan
(2011) and uncovers various currency portfolios with average returns that
cannot be explained by the CAR factor. Going beyond interest-rate-sorted
portfolios, the test assets commonly studied in the literature are
characteristic-sorted portfolios based on momentum, value, dollar beta,
FX correlations, and volatility-managed and mean-variance-optimized cur-
rency portfolios. We investigate whether we need additional pricing factors,
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such as momentum, value, dollar beta, FX correlation dispersion, volatility,
illiquidity, skewness, downside risk, or financial intermediary, or factors
containing other information to price the aforementioned broad set of test
assets. However, we find that simple adjustments to CAR are sufficient, and
we do not need additional pricing factors.

Guided by a mean-variance optimization (or, equivalently, the construc-
tion of the minimum variance stochastic discount factor), we find that the
covariance matrix of exchange rate growths and forward discounts have
important information for pricing. We denote our factor as the covariance
and spread (or forward discount) adjusted carry (CSCAR) factor. We show
that CSCAR as a single pricing factor explains the cross-section of average
returns, and it subsumes the relevant information of other factors.

First, we find that CSCAR is priced in the cross-section and has a large and
significant risk premium. Second, the implied risk premium is not statistically
significantly different from the average return of CSCAR, which is an im-
portant validation test for a traded factor.

Third, there is no evidence of mispricing, and the abnormal returns of all
test assets are not jointly significantly different from zero, both in the cross-
sectional and in time-series pricing equations. Fourth, the model fit (R?) of
the cross-sectional pricing equation is large. Fifth, and finally, both compo-
nents of CSCAR, namely, the conditional exchange rate correlations and
forward discounts, are time varying and forecast future realized currency
returns.

Carry factors, which do not use all the information of the covariance ma-
trix and forward discounts, do not price assets adequately. In particular, the
following three variants do not explain the cross-section of average returns:
(a) a spread-adjusted carry, which ignores the information of the covariance
matrix, (b) a covariance-adjusted carry, which does not properly account for
the size of forward discounts, or (c) a volatility-managed carry factor (in the
spirit of Fleming, Kirby, and Ostdick 2001; Moreira and Muir 2016), which
ignores the information of the correlation matrix. Popular single- and mul-
tifactor models, which incorporate CAR, dollar carry, momentum, value,
illiquidity, skewness, downside risk, and intermediary asset pricing factors,
do not span the CSCAR factor and are rejected in our tests. We conclude that
accounting for both the covariance matrix (i.e., variances and correlations of
exchange rate growths) and forward discounts is important for pricing, and
well-known factors in the literature do not capture this pricing information.

We document that the conditional covariance matrix of exchange rate
growths and forward discounts vary through time, and CSCAR dynamically
adjusts its risk exposure (measured by its notional value or leverage) in re-
sponse to this variation. It is important to properly account for this time-
series variation. We construct a variant of CSCAR, which keeps its risk
exposure constant through time, and show that this variant is rejected in
our tests.
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Finally, if the conditional covariance matrix and forward discounts are
important determinants of conditional expected returns and if they vary
through time, then FX market returns should be predictable. We verify
this hypothesis and show that the notional value, leverage and turnover of
CSCAR (which capture changes in the conditional covariance matrix of ex-
change rate growths and forward discounts) forecast FX market returns,
volatility, and illiquidity 1 to 18 months ahead.

CSCAR is the return of the portfolio with weights H,CS CAR _ Q- fd,, where
the ith element HﬁSCAR is the portfolio weight placed on the position in cur-
rency i against the USD; Q, is the conditional covariance matrix of exchange
rate growths; and fd, a vector of forward discounts at time ¢ (see the details in
Section 1). If the forward discount fd; ; is a proxy for the conditional expected
excess return of the position in currency i against the USD, then CSCAR is
the return of a mean-variance efficient currency portfolio or the inverse of the
minimum-variance stochastic discount factor in FX markets. Although this
interpretation of CSCAR is appealing, our empirical tests and results do not
rely on the assumption that forward discounts are proxies for conditional
expected excess returns or the assumption that investors only care about the
first two moments of the return distribution. We do not take a stance on the
underlying model. We provide new evidence that the covariance matrix of
exchange rate growths and forward discounts have important information
for pricing assets in FX markets.

We are not the first to construct mean-variance efficient currency portfo-
lios. In that sense, our covariance and spread adjustments are not new.
However, the related literature focuses on the profitability of trading strate-
gies and documents that mean-variance optimized portfolios in FX markets
generate large out-of-sample returns (Baz et al. 2001; Della Corte, Sarno, and
Tsiakas 2009; Ackermann, Pohl, and Schmedders 2016; Daniel, Hodrick,
and Lu 2014; Maurer, To, and Tran 2020). In contrast, our paper studies
the ability to price the cross-section of average returns in FX markets. We
identify the importance of an efficient combination of the first two moments
of FX returns to construct a single-factor model that prices the cross-section
of alarge set of FX securities. Market timing as discussed by Maurer, To, and
Tran (2020) is a crucial component for the model to succeed in unconditional
tests. In addition, other papers have studied correlation risk or spread adjust-
ments (Hassan and Mano 2019; Mueller, Stathopoulos, and Vedolin
2017; Verdelhan 2018). However, we show that both adjustments are needed,
and they have to be incorporated in a specific manner for the factor pricing
model to succeed.

Our findings have important implications for theoretical models and em-
pirical research. Many theoretical models focus on forward discounts and do
not analyze how variances and correlations influence exchange rate growths.
Our findings suggest that the exchange rate growth variances and correla-
tions contain important information for pricing and should be relevant in
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economic models. We also document a substantial time-series variation in the
conditional covariance matrix of exchange rate growths and forward dis-
counts, and accounting for this variation is a critical step in pricing assets.
Future empirical research should investigate the underlying economic funda-
mentals that drive this time-series variation. We study the CSCAR factor in
the model of Mueller, Stathopoulos, and Vedolin (2017) and show how it
differs from their FX correlation risk factor.

Our paper is related to that of Bekaert and Panayotov (2020), who doc-
ument that, among G-10 currencies, traditional carry trades (labeled as “bad
carries”), which involve prototypical currencies with the highest and lowest
interest rates (i.e., AUD, JPY, and CHF), offer substantially lower Sharpe
ratios and high negative skewness compared to other currencies (labeled as
“good carries”) with less extreme interest rates. Their study questions the role
of return skewness and crash risk in rationalizing the performance of tradi-
tional carry trades based on interest rate differentials. Our paper concurs with
this finding in that our CSCAR factor has a positive skewness and high
Sharpe ratio. CSCAR differs from good carry trades of Bekaert and
Panayotov (2020) along three aspects; namely, CSCAR does not preclude
prototypical currencies, its portfolio composition is time varying, and it fea-
tures market timing (quantified by its time-varying notional value). That is,
CSCAR integrates prototypical currencies back into the set of admissible
currencies, while it efficiently trades off exchange rate covariances (i.e.,
risk) and forward spreads (i.e., expected rewards) to pin down the priced
risks in FX markets.

Daniel, Hodrick, and Lu (2014) also examine different carry trade strat-
egies: spread-weighted (or varying portfolio weights with interest rate differ-
entials), risk-balanced (or controlling for the volatility of strategy returns),
mean-variance efficient with fixed notional values, and dollar carry. They
show that while spread-weighting, risk-balancing, and mean-variance opti-
mization improve the performance of carry trades, the most remarkable im-
provement is with the dollar carry strategy. Our results not only reinforce
these findings on the improvement of the carry trade performance but also
demonstrate the enhancing effect of combining spread weighting, risk bal-
ancing, and mean-variance efficiency without rigidly fixing notional values.
As a result, CSCAR significantly outperforms the dollar carry in both meas-
ures of profitability and risk pricing.

Hassan and Mano (2019) decompose currency returns into a cross-
currency, a between-time-and-currency, and a cross-time component. They
explain the differences between the forward premium puzzle and the dollar
trade versus the carry trade. Our CSCAR factor builds on this and demon-
strates that both the portfolio composition in a specific month and the market
timing across months (i.e., the time variation in the notional value) are im-
portant to price FX market risks.
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Mueller, Stathopoulos, and Vedolin (2017) introduce a model and a factor
to study the pricing implications of FX correlation risk. Verdelhan (2018)
further introduces a model of systematic dollar risk exposure, which also
captures correlations. We show that the CSCAR factor has information be-
yond the FX correlation factor in the model of Mueller, Stathopoulos, and
Vedolin (2017). Moreover, in the data CSCAR is able to explain a large
cross-section of FX returns, while several tests reject the factor models of
Mueller, Stathopoulos, and Vedolin (2017) and Verdelhan (2018).

Our paper is also related to the empirical literature that analyzes various
pricing factors in FX markets: carry factor (Lustig and Verdelhan
2007; Lustig, Roussanov, and Verdelhan 2011), global volatility factor
(Menkhoff et al. 2012; Christiansen, Ranaldo, and Soderlind 2011), momen-
tum factor (Burnside, Eichenbaum, and Rebelo 2011; Menkhoff et al. 2012),
global currency skewness factor (Rafferty, 2012), dollar factor (Lustig,
Roussanov, and Verdelhan, 2014), downside beta risk factor
(Dobrynskaya, 2014; Lettau, Maggiori, and Weber 2014; Galsband and
Nitschka 2013), FX liquidity risk factor (Mancini, Ranaldo, and
Wrampelmeyer 2013), economic size factor (Hassan, 2013), economic mo-
mentum (Dahlquist and Hasseltoft 2020), and surplus-consumption risk fac-
tor (Riddiough and Sarno 2020). We show that the covariance matrix and
forward discounts contain important information about pricing not captured
by the popular factors in the literature.

. Currency Returns and Data

We denote spot and 1-month forward exchange rates as USD per unit of
currency i at time ¢ by X;, and F;,. Following the literature, we define the 1-
month realized currency return between currency i and the USD (denomi-
nated in USD) by CT; ;41 = In 1’;*‘ . This is the return of an uncovered long
position in the forward exchange rate contract of currency i against the USD.

We can decompose this into the forward discount fd;, = ln< ) (known at

time 7) and the exchange rate growth Ax; ;4| = ln( ”*‘) (realized at time 7 4

1), CT1 = fdiy + Axiyq !

We build currency portfolios for our test assets and traded factors as
follows. Let 0;, be the portfolio weight at time ¢ on the currency return
CT; 415 thatis, ||6;,]| indicates the dollar amount per USD of wealth invested
in a long (if 0;; > 0) or short (if 0;, < 0) position in the uncovered forward

Under the premise of the covered interest rate parity (CIP), that is, the forward discount is equal to the interest
rate differential fd;, = In (%) where Rys, and R;, are 1-month risk-free imerest rates in the USD and
currency i, the currency return is equivalent to borrow z— USD and lend z——— Res T X units of currency i. We do

not require the CIP to hold for the construction of our fdctors and test assets. We implement all currency returns
using forward and spot exchange rates and do not need information about interest rates.
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exchange rate contract in currency i against the USD. 6,is an N x 1 column
vector containing 0,, for all currencies i, where N denotes the number of
exchange rates against the USD in our sample. Because of fluctuating data
availability, the number of currencies N changes through time. To simplify
the notation, we drop the time subscript for V. Since currency returns are net-
zero investments (i.e., excess returns), the portfolio weights do not need to
sum to one. We define ), ||0; || as portfolio 0,’s notional value or total dollar
exposure per dollar of wealth. Furthermore, >, 0;, is the leverage or net-
dollar position in all risky currency returns per dollar of wealth. Large (small)
notional value and leverage indicate that the strategy is aggressive (conser-
vative) and has a large (small) risk exposure. The realized excess return (over
the risk-free rate in USD) of the portfolio is >, 0; ,CTj 1.

We collect daily spot and 1-month forward exchange rates from Barclays
Bank International and Reuters via Datastream. We use quotes of the last
day of the month to compute monthly currency returns C7;,.. Potential
concerns of currencies of emerging countries are capital controls and major
trading frictions. Menkhoff et al. (2012) and Della Corte, Ramadorai, and
Sarno (2016) suggest excluding countries with a negative score on the capital
account openness index of Chinn and Ito (2006). Following this literature,
we use 29 exchange rates against the USD from January 1984 to February
2016. We follow Lustig, Roussanov, and Verdelhan (2011) and split our
sample into 15 developed and 14 emerging countries. The 15 developed
countries are Australia, Belgium, Canada, Denmark, euro area, France,
Germany, Italy, Japan, Netherlands, New Zealand, Norway, Sweden,
Switzerland, and the United Kingdom. The 14 emerging countries are
Brazil, Czech Republic, Greece, Hungary, Iceland, Ireland, Mexico,
Poland, Portugal, Singapore, South Africa, South Korea, Spain, and
Taiwan. The euro was introduced in January 1999, and we exclude all coun-
tries that have joined the euro after that and only keep the euro as a currency.
Except for the empirical results concerning the CSCAR factor pricing anal-
ysis, results pertaining to the set of 29 exchange rates against the USD are
relegated to the Internet Appendix.

Besides selecting currencies according to the capital account openness in-
dex of Chinn and Ito (2006), we apply the following filters to remove indi-
vidual currency-month observations, which are likely to be subject to major
trading frictions, market segmentation or feature a substantial default risk in
the short-term sovereign bond market. All filters use information known ex
ante without introducing bias. First, we exclude a currency in month ¢ if the
absolute value of the annualized forward discount 12 x |fd;,| is larger than
20%. Forward discounts of more than 20% are rare and we believe that such
large values likely indicate the presence of severe trading frictions, sizable
sovereign default risk or an extraordinary large currency devaluation.
Second, we remove a currency in month ¢ if the relative bid-ask spread of
either the forward or spot exchange rate (i.e., the monthly trading cost) is
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larger than 1%. These filters remove only 0.4% (1.7%) of currency-month
observations in our sample of 15 (29) countries between January 1984 and
February 2016.

. Pricing Factors

We first describe the well-known high minus low forward discount carry
trade factor of Lustig, Roussanov, and Verdelhan (2011). Then, we intro-
duce two simple adjustments to take into account the size of forward dis-
counts and the covariation between exchange rates. We show that these
adjustments are important to enhance the carry factor and enable it to fully
capture the cross-section of average returns of a broad set of currency port-
folios. We further introduce and test several additional factors that are
contenders.

2.1 Covariance- and spread-adjusted carries
CAR: Lustig, Roussanov, and Verdelhan (2011) introduce an equally
weighted Carry (CAR) factor. On the last day of every month 7, we sort
currencies according to the current forward discount fd;;, and for each quin-
tile k € {1,...,5} we construct an equally weighted portfolio fdP; of cur-
rency returns CT;, for all currencies i in quintile k. The CAR factor takes a
long position in the high forward discount portfolio fdPs and a short position
in the low forward discount portfolio fdP;. CAR is well-known to explain the
cross-section of average returns of forward-discount-sorted portfolios.
However, it does not capture the cross-sectional variation of average returns
of other currency portfolios. To address this shortcoming, we enhance the
carry factor by taking into account the size and time variation in the forward
discounts and the covariation of exchange rates. That is, we construct a
Covariance- and Spread-adjusted Carry (CSCAR) factor.

SCAR: We define the Spread-adjusted Carry (SCAR) factor as the realized
portfolio excess return » O3CARC T r+1 with

it
SCAR
0[ = fdfa

where fd, is a column vector containing the forward discounts fd; , for all N
exchange rates i. The spread adjustment has implications on the portfolio
composition at time ¢ and on the time variation in the notional value
> \|9§,CAR| |. CAR ranks currencies according to the forward discount and
equally weights top- and bottom-ranked currencies, whereas SCA R has more
fine-tuned weights and a currency with a large (small) forward discount
receives a proportionally large (small) weight. Moreover, forward discounts
change through time and if the sum of absolute forward discounts >, ||fd; ||
is large (small), then the notional value of SCAR is large (small). Thus, SCAR
is dynamic and times the market based on the absolute size of the forward
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discounts. In contrast, CAR has a constant notional value through time, that
is, no market timing.

CSCAR: CSCAR adjusts SCAR using information (available at time f)
about the covariation between exchange rate growths. We normalize the
portfolio weights of SCAR by the conditional covariance matrix,

OESCAR Q:IG;SCAR _ Q;lfd,,

where Q;l is a robust version of the inverse of the conditional covariance
matrix Q, of all exchange rate growths. Similar to SCAR, CSCAR is dy-
namic, and its notional value varies through time. However, 3 .|| f,SCARH
not only depends on the absolute size of the forward discounts but also takes
into account changes in covariances. Thus, it is a covariance managed port-
folio. In particular, CSCAR invests more aggressively in FX markets when
forward discounts are large (in absolute size) and the (co)variation in ex-
change rate growths is low.

CSCAR is equivalent to a mean-variance efficient portfolio or the inverse
of the minimum variance stochastic discount factor (SDF) in FX markets
(Hansen and Jagannathan, 1991), if we assume that the forward discount fd;,
is a proxy for the conditional expected excess return of CTj,+;. Such an
assumption can be motivated by the fact that exchange rate changes A
Xi41 are difficult to predict (Meese and Rogoff 1983). Baz et al. (2001),
Della Corte, Sarno, and Tsiakas  (2009), Ackermann, Pohl, and
Schmedders (2016), Daniel, Hodrick, and Lu (2014), and Maurer, To,
and Tran (2020) analyze the performance of mean-variance efficient trading
strategies similar to CSCAR, but none of these papers investigates the per-
formance of a mean-variance efficient strategy as a pricing factor. Under this
interpretation, the notional value of CSCAR is large and the factor invests
aggressively when the conditional Sharpe ratio and the conditional variance
of the minimum variance SDF are large (i.e., forward discounts are large and
covariances small), and the factor invests conservatively when the conditional
Sharpe ratio and the conditional variance of the minimum variance SDF are
small. We revisit this market timing property of CSCAR in Section 3.7 and
show that CSCAR is able to forecast FX market returns, volatility and
illiquidity.

We use an exponentially weighted moving average (EWMA) of squared,
demeaned daily exchange rate growths over the past 6 months to estimate the
monthly conditional covariance matrix Q, Element (i, j) of Q, is

T
. D 0T (Axy e~ Ax i) (DX —AX )
Cov(CTiyr1, CTjiy1) = Covi(Axipy1, Axjipr) = ¢ 7 5 where A
Z&TH

1

X4, 1s the daily exchange rate growth of currehcy i against the USD on

day 7 in the 6-month period preceding the last day of month ¢, A_xd,m = %
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T/
>~ Axg; is the sample average of the daily exchange rate growth Ax,; . over
h=1
the past 6 months, 77 is the number of trading days within the past 6 months,
and EWMA weight 6 = 0.95. The EWMA weight of 0.95 implies a half-life
of an exchange rate growth observation of 14 trading days. Our results are
robust to various choices of the window length and the EWMA weight.”
To obtain a robust version of the inverse of the covariance matrix, we first
diagonalize Q, = W,A, W', where W, is the N x N rotation matrix (whose N
columns are the N x 1 elgenvectors) and A, the N x N diagonal matrix with
the eigenvalues 4;, for i € {1,..., N} on its diagonal. We then remove ei-
genvalue /i, (i.e., row and column & of A,) and its corresponding eigenvector

(i.e., column k of W) if ++— A“ < 1%. We denote the new matrices after
Z/lh.!
h=1
removing K small eigenvalues and corresponding eigenvectors by the (N — K
) x (N — K) diagonal matrix A, and the N x (N — K) rotation matrix W,,

and define f)t_l = W[[\;l I/Vt This procedure reduces estimation errors in the
covariance matrix and provides us with a robust version of the inverse of the
covariance matrix. Our approach is equivalent to a principal component
analysis and building a factor model with the N — K largest principal compo-
nents (where each component explains 1% or more of the common variation
in exchange rate growths). Removing principal components that explain only
a small fraction of the exchange rate variation helps us to avoid in-sample
overfitting and near-arbitrage opportunities, that is, factors with an unrea-
sonably large in-sample Sharpe ratio (Ross 1976; Kozak, Nagel, and Santosh
2018).

2.2 Other pricing factors

DOL, DDOL: The dollar (DOL) is a traded factor that invests equally in all
currencies (Lustig, Roussanov, and Verdelhan 2011), that is, OD OL — +- The
Dollar Carry (DDOL) takes a long (short) position in the DOL when the
median forward discount across all exchange rates is positive (negative)
(Lustig, Roussanov, and Verdelhan 2014),
gPPOL — sign(median({fd,;,}j[il ))0PCk.

MOM: Momentum (MOM) portfolios in FX markets are analyzed by
Burnside, Eichenbaum, and Rebelo (2011) and Menkhoff et al. (2012). On
the last day of every month ¢ we compute for each currency i the average
monthly currency return over the past 12 months. We then sort currencies
according to the past performance into quintiles (the top quintile contains the

We have tested window lengths between 3 and 12 months and EWMA weights between 0.9 and 1, and our
findings remain essentially unchanged.
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winner currencies and the bottom quintile the loser currencies) and build
equally weighted currency portfolios for each quintile. We denote these five
portfolios by MomP;, Vi € {1,...,5}. MOM takes a long position in the
winner currency portfolio MomPs and a short position in the loser currency
portfolio MomP;. In our sample at time 7, we use only currencies for which
we can observe all returns over the past 12 months.

VAL: The value (VAL) strategy assumes that in the long run undervalued
currencies with low real exchange rates appreciate against overvalued cur-
rencies with high real exchange rates (Bilson , 1984). On the last day of every
month ¢ we sort currencies according to their real exchange rates against the
USD into quintiles, where the top quintile contains overvalued and the bot-
tom quintile undervalued currencies. The real exchange rate of currency i
against USD is equal to the purchasing power parity (PPP) at time ¢ (quoted
as currency i per USD of a representative consumption bundle) multiplied by
nominal exchange rate X; ;. Our value portfolios do not use macroeconomic
information to remove the effect of the expected real interest rate differential
and the long-run expected real exchange rate from the real exchange rate as in
Menkhoff et al. (2017). We construct equally weighted currency portfolios
for each quintile, denoted by ValP, Vi € {1,...,5}. VAL takes a long posi-
tion in the portfolio of undervalued currencies, Va/P;, and a short position in
the portfolio of overvalued currencies, ValPs. Finally, our construction of the
value portfolios differs from that of Asness, Moskowitz, and Pedersen (2013)
or Menkhoff et al. (2017), who use 5-year changes in PPP as a signal. We find
that our overall conclusions are unaffected whether we use the current or 5-
year changes in PPP.?> However, our approach to construct value portfolios
has the advantage that we have more data as we do not need 5 years of past
data. The 5-year time lag means that our overall sample not only is 5 years
shorter but also is problematic when new currencies enter the sample.

NSCAR, SCARy. The Normalized-Spread-adjusted Carry (NSCAR) factor
is a normalized version of SCAR that keeps the notional value constant, and
thus, it has no market timing (Danicel, Hodrick, and Lu, 2014),

SCAR g
ONSCAR — o M Although NSCAR has a constant notional

DA I ST
value, its conditional variance is still time varying because FX market vola-
tility is changing through time. SCAR¢y adjusts SCAR to keep the condi-
tional  volatility  constant  equal  to o through time,

. - SCAR ~ ~ o~ o~
g3CARr — U — 5% gnd where Q, = W,A,WJ.
t \/(();S(,AR>/Q’U;S(AR \/fd;Qsz t

The robustness results are available on request.
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CARy s, NSCARy 54, VSCAR: We construct volatility-managed versions of
CAR and NSCAR according to Fleming, Kirby, and Ostdiek (2001) and
Moreira and Muir (2016). We compute the conditional variance of CAR and
NSCAR denoted by ¢“R and ¢M“4R ysing daily returns of these factors

over the past month and define the volatility-managed factors as QICARV“ =
HCAR 0 NSCAR

(UFAR)” and 9§VSCARVM =@ wom . The Variance- and Spread-adjusted Carry

(VSCAR) factor is a more sophlstlcated version of a volatility-managed carry
factor and adjusts SCAR by normalizing the portfolio weight HE,CAR by the

variance of exchange rate 7, 0] 5 = D105k = p-1fd, where D, is a

diagonal matrix equal to the diagonal of f);l. In other words, VSCAR is
similar to CSCAR butignores (sets to zero) all correlations between exchange
rate growths. The advantage of V'SCAR is that fewer parameters have to be
estimated; this advantage reduces estimation errors. The disadvantage is the
loss of important information about correlations.

CECAR: The Covariance-adjusted Equally weighted Carry (CECAR) factor
follows the CSCAR factor to make a covariance adjustment, but }t does not
fully account for the size of the forward discounts, 0<% = Q" sign(fd,).

CSCARcg, CSCARcy, CSCARyy;: CSCARg normalizes CSCAR at every
point in time so that its notional value is constant through time:

OCSCARk — o Ackermann, Pohl, and Schmedders (2016) and

- Z ||0FS'FARH
Daniel, Hodrick, and Lu (2014) show that this portfolio earns a large
Sharpe ratio but they do not consider the properties of CSCA R as a pricing
factor. CSCARcy adjusts CSCAR to keep the conditional volatility constant
CSCARcy (CSCAR _ o, ',
0[ - \/(HI(SCAR)/QIHICSCAR - \//de, P where
Q= W,;\ " I/Vt CSCARyy follows CSCAR to adjust CAR, while taking into
account the covariance matrix and forward discounts. In contrast to
CSCAR, CSCARyy uses the covariance matrix Q, and inverts it instead of

equal to ¢ through time:

. : . oAl
the robust version of the inverse covariance matrix €, . Therefore,
CSCARm _ (-1
9[ fall Qt 1.

VOL: Menkhoff et al. (2012) introduce a factor that captures unexpected
changes in global FX market volatility. Global FX market volatility at the
end of month 7 is computed as follows:

VOL, = T ),
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where Ax,; ; is the daily exchange rate growth of currency i against the USD
on day 7 in month ¢, 7, is the number of trading days 7 in month ¢. The
measure uses absolute instead of squared exchange rate growths so that
outliers are less accentuated. The VOL index is the time series of residuals
after estimating an AR(1) process for VOL, and thus captures unexpected
changes in volatility, VOL, = 0, VOL,_ | + VOL,. Note that VOL is not a
traded factor. Menkhoff et al. (2012) show that a traded portfolio that mimics
VOL is almost identical to CAR.

HMLDB: Verdelhan (2018) develops a long-short strategy based on DOL
factor loadings. Following Verdelhan (2018), we regress currency returns on
the DOL and CAR factors. We then sort currencies into six quantiles k € {
l,...,6} according to the dollar beta (i.e., the DOL factor loading). If the
median forward discount rate of all developed currencies is positive (nega-
tive), then portfolio DBy, takes a long (short) position in the equally weighted
portfolio of currency returns CT;,; for all currencies i in quantile k. The
HMLDB portfolio takes a long position in the high dollar beta portfolio DBs
and a short position in the low dollar beta portfolio DB;.

HMLC: Mueller, Stathopoulos, and Vedolin (2017) define the FX correla-
tion dispersion measure (FXC) as the difference between the average of the
top and the bottom deciles of the realized conditional correlations between all
exchange rates. Following their procedure, we then sort currencies into four
portfolios based on the beta of their returns with respect to innovations in
FXC, denoted by AFXC. The equally weighted portfolios corresponding to
each quartile are denoted by FXCB;, Vi € {1,...,4}. The HMLC portfolio
takes a long position in the high AFXC beta portfolio (FXCB,), and a short
position in the low AFXC beta portfolio (FXCBy).

ILL: We follow Karnaukh, Ranaldo, and Soederlind (2015) to construct a
monthly systematic FX market illiquidity measure ILL as the average of
standardized daily relative bid-ask spreads and standardized 2-day Corwin
and Schultz (2012) estimates within a month and across all currencies. Our
data are not identical to Karnaukh, Ranaldo, and Soederlind (2015); that is,
there is a difference in the set of currencies and the daily recording time of the
bid-ask spreads, and our data cover the sample 1984-2016, while theirs cover
1991-2016.* The correlation between our measure and theirs is 57% for the
monthly data from 1991 to 2016. Similar to the construction of the volatility
factor VOL, we fit an AR(1) model to /LL and use the residuals ILL as a
proxy for unexpected changes in illiquidity, /LL, = p;;;ILL,_; + ILL,.
Note that /LL is not a traded factor.

Karnaukh, Ranaldo, and Soederlind (2015) show that relative bid-ask spreads can be sensitive to the recording
time.
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SKEW: Rafferty (2012) introduces a FX market skewness (SKEW) factor,
which is the average skewness of exchange rates with positive minus the

average skewness of exchange rates with negative forward discounts,
Ty
T,E:(A‘C(IM—A‘C(M)z
SKEW, =+, sign(fd;; ) G 5, where Axy; . is the daily
T, 2 '

> (Axqie—Axaiz)

T

exchange rate growth of currency i against the USD on day 7 in month ¢,

Aixdﬁ,»,r =7 Z Ax,;, is the sample average of the daily exchange rate growth
h=1

Ax4; . in month ¢, and T, is the number of trading days in month ¢. Note that
SKEW is not a traded factor.

MKT, INT: Finally, we use two stock market factors: the value weighted U.S.
stock market index (MKT) and the traded intermediary capital risk factor
(INT) of He, Kelly, and Manela (2017).

For a simple comparison of all 22 pricing factors employed in the paper,
see the Internet Appendix, which contains the pairwise correlations for all
factors. We analyze and discuss the factor characteristics in pricing the FX
markets in the remaining parts of the paper.

2.3 Importance of market timing
Some of the factors have proportional portfolio Weight vectors at any point in

)H
time ¢, that is, for factors H and L, for all currencies i and
Z 1167 Z H Al

points in time z. The difference between H and L is the time series of the

PRI

notional values or in other words the market timing, that is, generally, S
j

H
7 % ::92:: for 7 # 7. In particular, CAR and CARy j; have proportional

portfolio weights at any time ¢, but CA R has a constant notional value, while
CARy 3 decreases (increases) its notional value if volatility increases
(decreases). Similarly, SCAR, SCARcy, NSCAR, and NSCARy,, have pro-
portional portfolio weights at any time ¢, but the notional value of NSCAR is
constant through time, while SCAR, SCARcy, and NSCARy,, time the
market based on the absolute size of the current forward discounts and cur-
rent volatility. Finally, CSCAR, CSCARcr, and CSCARcy have propor-
tional portfolio weights at any time ¢, but CSCARr has a constant notional
value, while CSCAR and CSCARcy dynamically adjust their notional value
depending on the absolute size of the forward discounts and the covariance
matrix of exchange rate growths.
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Conditional at time ¢ the excess return distributions of factors with pro-
portional portfolio weights are proportional; that is, they are identical up to
the multiplication by the ratio of the notional values of the factors. However,
the unconditional return distributions of these factors are different if the time
series of the notional values are distinct. For instance, the unconditional
correlation is 0.64 for returns of CSCAR and CSCARcg, 0.79 for CSCAR
and CSCARcy, and 0.93 for CSCARcg and CSCARy. Accordingly, when
we estimate and test a pricing model using general methods of moments, a
factor that times the market may fit the data better or worse than a normal-
ized factor with a constant notional value. It is eventually an empirical ques-
tion which time series of the notional value generates a factor that is able to
price assets. In the following, we document that CSCAR explains the cross-
section of FX market returns, while CSCARr and CSCARy are rejected in
our tests.

. Pricing Factor Model Tests

We test the ability of CSCAR and the competing pricing factors (both single-
and multifactor models) described in Section 2 to price a broad cross-section
of test assets. We use the following N = 36 test assets: 5 forward-discount-
sorted portfolios (fdP; Vi€ {1,...,5}), 5 momentum-sorted portfolios
(MomP; Vi € {1,...,5}), 5 value-sorted portfolios (ValP; Vi € {1,...,5}),
6 dollar beta portfolios (DB; Vi € {1,...,6}), 4 FX correlation dispersion
portfolios (FXCB; Vi € {1,...,4}), and all traded pricing factors in Section
2, thatis, DDOL, CARyp;, SCAR, NSCAR, NSCARy,s, SCARcy, VSCAR,
CECAR, CSCAR, CSCAR g, and CSCARcy> We separately implement all
our tests using data of the subset of 15 developed currencies and the full set of
29 developed and emerging currencies.® Except for the empirical results con-
cerning CSCAR factor pricing analysis, results pertaining to the set of 29
currencies have been relegated to the Internet Appendix. The results are
robust across the two sets of currencies.

We demonstrate that the covariance and spread adjustments of the carry
trade are important to price the cross-section of FX market returns. In par-
ticular, we show that the single-factor CSCAR model cannot be rejected,
while other single- and multifactor models are rejected in our tests.

We exclude DOL, CAR, MOM, VAL, HMLDB, and HMLC portfolios because they are spanned by the 25

fdP,, MomP,, ValP;, DB;, and FXCB; portfolios.

To obtain a balanced panel of factors and test assets starting in January 1984, we need additional data before
January 1984 to construct signals for the MomP;, DB;, and FXCB; portfolios. Datastream has exchange rate
data quoted against the GBP before 1984. However, these data are less complete and considered less reliable
compared to the data in our main sample. We use only these earlier data to generate signals to sort currencies for
MomP;, DB;, and FXCB; in the beginning of our main sample. Our results are robust if we do not use the earlier
data, but the time series of our panel of factors and test assets becomes 5 years shorter, and the power of the tests
decreases.
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3.1 Estimation: Sequentially efficient GMM

We focus on linear factor pricing models E[R;] = By, where R, is the N x 1
vector of excess returns at time ¢ of N test assets, N x K matrix f§ are the
loadings of the N test assets on K pricing factors (element (i, k) is test asset i’s
loading on factor k), K x 1 vector y are the market prices of risk or risk
premiums of the K factors, and E[x] is the mean of variable x.

We estimate the model using the sequentially efficient general method of
moments (GMM) (Hansen 1982; Cochrane 2005; Shanken and Zhou 2007).
We denote first-stage (consistent but inefficient) estimates of parameters b by
b, and sequentially efficient second-stage estimates by b. We use the following
K+ (2 + K)N moment conditions,

E[F, — y
| Orxxny

g(b) = | El ® (R —o—BF)] | = | Oqarrnx1y
F,

E[R; — yolynx1y — B

to estimate the K + (1 + K)(1 + N) parameters b = [/, o/, vec(B)', 79, 7] - @
is the Kronecker product. F; is the K x 1 vector of the K factor realizations at
time ¢, and  is the corresponding K x 1 vector of expected factor realiza-
tions. N x 1 vector & = E[R, — BF,| are abnormal returns of the N test assets
in the first set of N time-series equations. vec(f5) is an NK x 1 vector of all
elements in the factor loadings matrix f. yo1yx1y = E[R, — B7] is the com-
mon mispricing across the second set of NV cross-sectional pricing equations.
Iinx1yisan N x 1 vectorof 1 and 0; 7,y isan Z x 1 vector of 0. We take into
account cross- and autocorrelations and heteroscedasticity following Newey
and West (1987) when constructing the covariance matrix of the parameter
estimates. Details about the estimation are in Appendix A.1.

O¢nx1y

3.2 Testable restrictions and model assessment
We use five tests to evaluate a factor pricing model. First, to validate pricing

o~

factor k, we check whether it is priced. We use the #-test statistic # to
Var(/h,\',()

check whether the estimated factor premium 7, is statistically significantly

different from zero. If %k is not significantly different from zero, then factor k
is not important to explain the cross-section of expected returns in FX
markets.

Second, if factor k is traded, then the pricing model implies that the factor
premium has to be equal to its expected excess return y, = ;.. We use the ¢-

o~ o~

o~ o~ ~

test statistic —4=E-—— with Var(ﬁk — ) = Var(ﬁk) + Var(ﬁk) - 2C0v(§k

V Var(yy—i)
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, ﬁk) to test whethery, — ﬁ,& is statistically significantly different from zero. If
it is significantly different from zero, then we reject the model.

Third, we check whether the estimated common pricing error yo in the
cross-sectional pricing equatlons is statistically significantly different from

o~

zero using the r-test statistic ——. If 7, yo is significantly different from
Var(/y\o)
zero, then we reject the model. R

Fourth,.we test whether the estimated abnormal returns i =E [R] =7
Linsay — /3)1 in the N cross-sectional pricing equations are jointly statistically
significantly different from zero. We use @ Cov(z )" as the test statistic,
which is %> distributed with N — K degrees of freedom. A large test statisticis a
rejection of the model. ~

Fifth, we test whether the estimated abnormal returns a= E[R; — fF;] in
the N time-series pricing equations are join{ly statistically significantly differ-
ent from zero. Our test statistic is Z=3~%a Cov(a )% ~ Fyr_n_k. A large
test statistic is a rejection of the model. This test is only possible if all pricing
factors in the model are traded because in the time-series equations factor risk
premiums are estimated using average excess returns of the factors.

Sixth, and finally, we report the R* of the N cross-sectional pricing equa-
tions. R*> provides an indication of how well the model explains average
returns in the cross-section, but it is not a formal test to reject a model.
Accordingly, we do not place much weight on this criterion.

3.3 Composition of CSCAR
Before we present our GMM estimation and test results, we will discuss the
portfolio composition of CSCAR. Table Bl provides summary statistics of
the portfolio weights HfSCAR of CSCAR. CSCAR is similar to CAR in the
sense that on average it takes long (short) positions in currencies with positive
(negative) forward discounts. Indeed, the cross-sectional correlation Corr(
HICSCAR,‘ fd;) between the average portfolio weight HCSCAR 7 >y , HSSCAR and
the average forward discount fd; = lTZ Jdi g is 0.93 for our data of 15 devel-
oped and 0.92 for our data of 29 developed and emerging currencies. Though,
this correlation is large for average quantities, the portfolio weights are
changing through time and the cross-sectional correlation in month ¢, Corr,
(HﬁSCAR,. fd; ) is often much smaller. On average the correlation is only 0.66
for the data of 15 and 0.63 for 29 currencies, and in some months it even turns
negative. Accordingly, one must sort currencies according to forward dis-
counts when constructing CSCAR, and the covariance matrix between ex-
change rate growths plays a crucial role as well.

Moreover, unlike that of CAR, the portfolio composition of CSCAR is far
from an equally weighted scheme, and portfolio weights vary through time.
The skewness of the unconditional distribution of portfolio weights is
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predominantly positive (negative) for currencies with positive (negative) av-
erage forward discounts. That is, weights take more extreme positive (nega-
tive) values for currencies with large (small) average forward discounts.

Portfolio weights vary through time because of the substantial time-series
variation in exchange rate forward discounts and the conditional covariance
matrix. The variation in forward discounts is considerable, but we observe
that forward discounts are converging toward zero (especially for developed
currencies) and appear more stable in more recent times.

We further document that the average FX market volatility measured by
VOL, (see Section 2.2 or Menkhoff et al. 2012) and the average correlation
between exchange rate growths are changing substantially through time. The

N
average correlation is calculated as p, = + > p;, inmonth 7, where p; , = 5
i=1 '

> i Corri(Ax;,, Ax;,) is the average correlation of exchange rate growth i

with all other exchange rate growths j, and we estimate the conditional cor-
relation Corr,(Ax;,, Ax;j,) between exchange rate growths i and j in month ¢
using daily exchange rate growths within the month. While forward discounts
and the average correlation vary through time we do not observe a particular
relationship to NBER recession periods. In stark contrast, FX market vola-
tility spikes during the financial crisis in 2007-2008.

Finally, we find again a strong time-series variation in the percentage of
eigenvalues (and corresponding eigenvectors), that we retain after we diago-
nalize the covariance matrix Q, and construct the robust version of the
inverted covariance matrix Q, . There is a negative correlation of —0.4 for
our data of 15 currencies and —0.66 for 29 currencies between the percentage
of eigenvalues retained and the average correlation between exchange rate
growths. This finding is intuitive: we need few (many) PCs to explain the
common variation in exchange rate growths if the average correlation is far
from (close to) zero.

The portfolio weights of CSCAR are functions of the forward discounts
and the covariance matrix. Thus, the notional value Y, [|0<°““||, leverage
32,0554 and turnover 37, |10;, — 0;,-1|| of CSCAR vary significantly
through time. This time series illustrates the market timing of CSCAR;
that is, it increases (reduces) its risk exposure and trades more aggressively
(conservatively) when the absolute size of the forward discounts is large
(small) and covariances are small (large). We observe that all three measures
generally approach zero in more recent times, which is mostly driven by the
narrower forward discount spreads.

3.4 CSCAR as a single pricing factor

We first test the single-factor CSCA R pricing model. This is the main result of
our paper. Table B2 summarizes our five tests to evaluate the model when we
use data from 15 developed (panel A) and 29 developed and emerging
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currencies (panel B). For each data set, we estimate the model using seven
different sets of test assets and report the results in separate columns. The first
column with the heading “5 IntP” uses only the five forward-discount-sorted
portfolios as test assets. These forward-discount-sorted portfolios are popu-
lar test assets in the literature. In the column labeled “5 MomP & 5 ValP” we
estimate our model using the 5 portfolios sorted on past currency returns and
the 5 portfolios sorted on real exchange rates. “Fifteen assets” tests our model
using IntP, MomP, and ValP together. “Six DB & 4 FXCB” uses the 6
portfolios sorted based on dollar beta and the 4 portfolios sorted based on
AFXC beta. “Twenty-five assets” uses 25 IntP, MomP, ValP, DB, and FXCB
portfolios together to test our model. “Eleven assets” uses the 11 traded
factors DDOL, CARyy, SCAR, NSCAR, NSCARy s, SCARcy, VSCAR,
CECAR, CSCAR, CSCARcg, and CSCARcy. “Thirty-six assets” uses all
test assets combined to estimate and test our model. If we use 10 or less test
assets, then the power is low and it is difficult to reject any hypothesis.” In our
discussion we emphasize the case of all 36 assets as the power of the tests is the
highest.

The results of our five tests are as follows. First, we estimate a sizable
implied annual risk premium 7 cgc4z for CSCAR in the cross-section of
FX market returns. For the case of 36 test assets, Jcgcqg 18 7.14% for the
data set of 15 developed currencies and 10.57% for the set of 29 currencies.
These estimates are highly statistically significant with z-statistics of 4.21 and
5.39. Thus, CSCAR is an important factor to price FX market returns in the
cross-section. The estimates are similar (and differences are well within com-
mon confidence bounds) for the diverse sets of test assets and across both the
data of 15 developed and the set of 29 currencies. J -gc 4 & 1S always statistically
significant, except when we use 6 DB and 4 FXCB as test assets. This is
attributed to the large estimation errors and low power when we have few
test assets. _

Second, 7 ¢scy is not statistically significantly different from the historical
average return fiogc4gr- 1he point estimate of ficgoyr 18 8.4% when we use
data of 15 developed currencies and 10.83% when we use 29 currencies.
These point estimates are close to the implied premium 7y -gc 4z, especially
for the set of 36 test assets and 29 currencies. This result is important because
CSCARisitself a traded asset and thus has to be correctly priced. We confirm
this finding in all sets of test assets for both 15 and 29 currencies, except for
the case of 11 test assets when we use 15 currencies. In this case ) cgc 4z 18 2%
smaller than Zi-gc4r, Which is significant at the 10% level with a p-value of
5.2%. N

Third, we do not find a common pricing error 7, in the cross-sectional
pricing equations. For the case of 36 test assets, 7, is 0.71% per year for 15

Results for the estimation using 5 MomP, 5 ValP, 6 DB, or 4 FXCB separately are available on request. These
estimates are not interesting as the power is too low for any meaningful test.
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developed currencies and 0.03% for 29 currencies, neither is significant.
Depending on the set of test assets and the set of currencies, the point estimate
of 7, varies between -1.34% and 2.56% per year. The point estimates are only
significant on the 10% level in two cases of 11 test assets and 15 currencies, or
6 DB and 4 FXCB test assets and 29 currencies.

Fourth, in all specifications the abnormal returns @ in the cross-sectional
pricing equations are not jointly statistically significantly different from zero,
except for the case of 36 test assets and 29 currencies when the p-value is 8%.
Note that the test statistic is substantially smaller than similar statistics for
other models that we test in the subsequent sections. Therefore, while not
perfect, the single-factor CSCA R model explains the cross-section of average
returns better than the alternative models. Further note that transaction costs
and capital controls can be an issue for emerging currencies. For instance,
Maurer, Pezzo, and Taylor (2020) demonstrate the importance of transac-
tion costs for FX trading strategies and show that an optimization over costs
is required to efficiently tackle the problem. N

Fifth, the joint test results of the abnormal returns @ in the time-series
pricing equations are similar to the joint tests of the abnormal returns in the
cross-section. This is not surprising given that the point estimate of the im-
plied risk premium of CSCAR is close to its historical average return. The p-
value of the F-test is always well above 10% for all sets of test assets.

Sixth, and finally, Figures C1 and C2 compare the model-implied expected
returns and the average historical returns of each test asset. The model cap-
tures the cross-section of average returns well. The DB portfolios are the only
potential complication. Three of the six DB portfolios have significant ab-
normal returns in the single CSCAR model. However, none of these abnor-
mal returns is significant at the 1% level.

To conclude, we report strong evidence in favor of the single-factor
CSCAR model. The risk premium of CSCAR is large and significant when
we estimate it in the cross-section of FX returns. Our estimate is robust to the
choice of the set of test assets or whether we use data of 15 developed or 29
developed and emerging currencies. Furthermore, we do not find robust
evidence to reject the single-factor CSCAR model. The risk premium esti-
mated in the cross-section is not statistically different from the historical
average return of CSCAR; the common pricing error in the cross-sectional
pricing equations is not significantly different from zero; and abnormal
returns are neither jointly significant in the cross-sectional pricing equations
nor in the times-series equations.

3.5 Importance of covariance and spread adjustments
In Tables B3 to B6 we show that models with various alterations of the single
CSCAR model are rejected. Therefore, we argue that both the covariance and
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spread adjustments are critical for CSCAR to price the cross-section of FX
market returns.

In every table, we present three model specifications. For each model, we
present results for the cases of 25 (columns 1 to 3) and 36 test assets (columns
4 to 6) using data of 15 developed currencies. In the Internet Appendix, we
show that our results are similar for the larger set of 29 developed and emerg-
ing currencies. In addition to the five tests described in Section 3.2, in the last
two rows we also report the abnormal returns of CSCAR as a test asset
according to the model under investigation. If the abnormal return is not
statistically significantly different from zero, then the model spans CSCAR
and contains all its relevant information for pricing. In contrast, if the ab-
normal return is significant, then CSCAR contains important risk not cap-
tured by the model. We find that the abnormal return of CSCAR is positive
and significant in all models.

CAR: Columns 1 and 4 in Table B3 report the results of the well-known
DOL-CAR two factor model. Recall that CSCAR adjusts CAR by taking
into account the covariance matrix and size of the forward discounts. Thus,
comparing the DOL-CAR model to the CSCAR model reveals the impor-
tance of these adjustments for pricing. Confirming the results in the literature,
Tables B3 shows that DOL is not priced in the cross-section, and CAR has a
significant risk premium between 4.06% and 4.36%, depending on the set of
test assets we use for the estimation. The implied risk premium for CAR is not
significantly different from its historical average returns. In all specifications
we are able to reject the model, i.e., 7 or the abnormal returns in the cross-
section o or the time-series o are statistically significantly different from
zero. In the case of 36 test assets the abnormal returns in the cross-section
and time-series equations are large, and we reject the hypothesis that they are
jointly equal to zero with p-values less than 0.1%. This confirms the results in
the literature that the DOL-CAR model is not able to explain expected
returns if we consider assets different from forward-discount-sorted portfo-
lios. In the last two rows, we report the abnormal returns of CSCAR in the
DOL-CAR model. The abnormal return of CSCAR is 5.42% in the cross-
sectional equation and 6.51% in the time-series equation. The 7-statistics are
between 3.67 and 4.69. These large abnormal returns confirm that CSCAR is
not spanned by the DOL and CAR factors.

Finally, in Figure C3, we compare the DOL-CAR model-implied expected
returns to the historical average returns of our 36 test assets. The model fails
to explain about half of the test assets; that is, the abnormal returns are
statistically significantly different from zero. The model does a good job of
explaining the ntP, ValP, MomP, and FXCB portfolios as none of the ab-
normal returns is significant. The DOL-CAR model is unable to explain the
average returns of all the DB portfolios and all 11 test assets, which include
several variations of (CS)CAR. Most of the abnormal returns of these test
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assets are significant at the 1% level. This is in stark contrast to the single-
factor CSCAR model illustrated in Figures C1 and C2. The model is able to
explain the cross-section of average returns.

We conclude that the covariance and spread adjustments are important in
explaining the cross-section of average returns of a broad set of test assets.

DDOL: Columns 2 and 5 in Table B3 show that the rejection of the DOL-
DDOL model is similar to that of the DOL-CAR model. The implied risk
premium of DDOL changes when we use 25 versus 36 test assets to estimate
the model. We reject the hypothesis that the abnormal returns are jointly
equal to zero in the cross-sectional and time-series equations. Finally, abnor-
mal returns of CSCAR are large (at 6.66% and 7.43%) and highly statisti-
cally significant, suggesting that DOL-DDOL does not span CSCAR.

NSCAR: NSCAR chooses portfolio weights proportional to the forward
discounts but keeps the notional value of the factor constant through time.
Thus, a model with NSCAR informs us of whether a spread adjustment of
CAR is enough to explain the cross-section of average returns. Columns 3
and 6 in Table B3 report the results. Overall, we see only modest improve-
ments of DOL-NSCAR over the DOL-CAR model. For the case of 25 test
assets the model does a reasonable job to explain the cross-section of expected
returns but we still reject (with a p-value of 8%) the join hypothesis that
abnormal returns in the cross-sectional or time-series dimensions are equal
to zero. Therefore, the spread adjustment makes some progress (though the
model is still imperfect) to capture the risks of the MomP, ValP, DB and
FXCB portfolios. In the case of 36 test assets, the corresponding p-values are
less than 1%, and the model is clearly rejected (similar to the DOL-CAR
model). We find again that DOL and NSCAR do not span CSCAR, that is,
the abnormal returns of the CSCAR are always positive and significant, at
5.36% and 5.60%.

CARy;; and NSCARy,.: A natural question is whether we need the entire
covariance matrix to adjust CAR or whether managing the volatility as
suggested by Fleming, Kirby, and Ostdiek (2001) and Moreira and Muir
(2016) is sufficient. We investigate the ability of CARy 3, and NSCARy »; as
pricing factors. Remember that these two factors differ from CAR and
NSCAR because of the market timing being based on the current volatility,
a fact that has implications on the unconditional return distribution and our
unconditional tests. Columns 1, 2, 4 and 5 in Table B4 suggest that managing
the volatility of CAR or NSCAR does not significantly improve the DOL-
CAR model. The DOL-CARy»; and DOL-NSCARy,; models appear to
explain the cross-section of average returns in the case of 25 test assets but
are rejected in the case of 36 test assets. In particular, in both models we reject
the hypothesis that the abnormal returns in the cross-sectional and time-
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series equations are jointly equal to zero with p-values less than 1%. Finally,
CSCAR has again highly significant abnormal returns between 5.27% and
6.10% in both models, which means that CSCAR is not spanned by these
factors. We conclude that a volatility-managed carry (CAR or SCAR) factor
does not explain the cross-section of FX returns and it is important to ac-
count for the entire covariance matrix.

Eight-factor model: In columns 3 and 6 in Table B4, we test whether a model
that includes the MOM and VAL factors in addition to DOL, and the above
discussed CAR, CARyy;, NSCAR, and NSCARy,, factors can explain the
cross-section of FX returns. Not surprisingly, the model is not rejected in the
case of 25 test assets. However, we still reject the eight-factor model in the
case of 36 test assets based on the fact that abnormal returns in the cross-
sectional and time-series equations are not jointly equal to zero. The p-values
are always less than or equal to 1%. Moreover, the abnormal return of
CSCAR is positive and significant (at 3.94% and 4.76%), suggesting that
the eight factors are not able to span all the priced risk contained in CSCAR.
Thus, momentum, value, and the volatility of the carry are not sufficient to
capture the information contained in the covariance and spread adjustments
of CSCAR.

SCAR and VSCAR: Similar to NSCAR and NSCARy;, SCAR and VSCAR
are the spread-adjusted versions of CAR. In addition to the spread adjust-
ment, SCAR times the market based on the size of the forward discounts. In
addition to the market timing of SCAR, VSCAR accounts for the variances
of all currency returns but ignores the correlations. Thus, SCAR and CSCAR
only differ because of the covariance adjustment, while 'SCAR and CSCAR
only differ because of the correlation matrix of exchange rate growths. While
we estimate significant risk premiums for SCAR and VSCAR, we still reject
both models. Columns 1, 2, 4, and 5 in Table B5 report the results. For the
SCAR model, abnormal returns in the cross-sectional and time-series equa-
tions are jointly different from zero for the cases of 25 and 36 test assets. For
the V'SCAR model, we cannot reject the model in the case of 25 test assets.
However, we always reject V'SCAR model when we use our set of 36 test
assets. For both the SCAR and VSCAR models, abnormal returns for
CSCAR are sizable and significant, ranging between 4.05% and 6.22%.
We conclude that the covariance adjustment is key to explain the cross-
section of returns. Moreover, the correlation structure between exchange
rate growths is important and accounting only for exchange rate growth
variances is not sufficient.

CECAR: In contrast to the above analysis, where we confirm that the co-

variance adjustment is important, we further investigate the importance of
the spread adjustment. CECAR accounts for the covariance matrix in the

22

Z20z fienuer g1 uo Jasn yoa] eulbiip | ssueliq] Ausieaiun Aq 26052£9/6 L 0geel/msdel/c601L 01 /10p/8lonle-soueape/sdel/woo dno-oiwspese//:sdiy woll papeojumod]



Pricing Implications of Covariances and Spreads in Currency Markets

same way as CSCAR but does not account for the size of the forward dis-
counts. Columns 3 and 6 in Table B5 report the results. The CECAR factor is
compensated with a significant risk premium in the cross-section, though the
size of the premium substantially varies with the set of test assets. In the case
of 25 test assets the rejection of the model is marginal. In the case of 36 test
assets the abnormal returns in the cross-sectional and time-series equations
are jointly different from zero and we reject the model with p-values less than
1%. Moreover, the abnormal returns of CSCAR are significant (at 5.16%
and 5.98%), and, thus, CECAR fails to capture the priced risks contained in
CSCAR. We conclude that fully accounting for the forward discount is im-
portant and the covariance adjustment itself is not sufficient.

CSCARcy and CSCAR(y. To investigate the importance of CSCAR’s mar-
ket timing (i.e., the time variation in the notional value), we test CSCARcr
and CSCARcy as pricing factors. Recall that the portfolio compositions of
CSCARcRr, CSCARcy, and CSCAR are identical up to the notional value.
CSCARcr is constructed to keep the notional value, and CSCARcy is con-
structed to keep the conditional volatility constant through time. Note that
the constant notional value does not imply a constant conditional volatility
because the volatility in FX markets is heteroscedastic. The time variation in
the notional value affects the unconditional distribution of returns and has
important implications for our model tests. It is not clear ex ante and even-
tually an empirical question whether the market timing of CSCAR or
CSCARcy or no market timing as in CSCARcy is desirable for pricing
assets. Columns 1, 2, 4 and 5 in Table B6 report the results. Both
CSCARcr and CSCARcy are compensated by large and significant risk
premiums. Neither of the two models can be rejected in the case of 25 test
assets, but we reject both models in the case of 36 test assets because abnor-
mal returns in the cross-sectional and time-series equations are jointly signif-
icantly different from zero. Moreover, in both models the abnormal returns
of CSCAR are significant, (ranging between 2.79% and 4.96%), suggesting
that CSCAR carries important information that is not spanned by the
CSCARcr and CSCARy factors.

CSCARyy;: To construct CSCAR, we diagonalize the covariance matrix €,
and remove small eigenvalues and corresponding eigenvectors to obtain a
robust version of the inverse of the covariance matrix Q, (see details in
Section 2.1). This approach helps to mitigate estimation errors in the covari-
ance matrix and avoid near-arbitrage opportunities.8 CSCARyyy uses the
“full” covariance matrix €,; that is, it does not remove the small eigenvalues.

There exist other methods to obtain robust estimates of the covariance matrix. For instance, the shrinkage
estimator of Ledoit and Wolf (2003) is an alternative approach. We find that our approach to diagonalize the
covariance matrix and remove small eigenvalues and eigenvectors yields more desirable results. Results using
shrinkage estimator are available on request.
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Therefore, comparing CSCA Ry to CSCAR informs us whether the diago-
nalization and removing small eigenvalues is relevant. Columns 3 and 6 in
Table B6 report the results. Similar to CSCAR, CSCARyy is priced in the
cross-section of returns and has a large and significant risk premium. The
implied risk premium is larger than the historical average return of
CSCARyy. We reject the CSCA Ry model because the abnormal returns
in the cross-sectional and time-series equations are jointly significantly dif-
ferent from zero in all model estimations. Finally, we find that CSCAR has a
positive and significant abnormal return (at 5.53% and 7.65%), and, thus,
CSCARyy; does not capture all the information contained in CSCAR. We
conclude that diagonalizing the covariance matrix Q, and removing small
eigenvalues and corresponding eigenvectors to construct a robust version of
the inverse of the covariance matrix, that is, Q: , 1s critical for CSCAR to
correctly price the cross-section of FX market returns.

To conclude, we confirm that both the covariance and forward discount
adjustments are important for CSCAR to price the cross-section of FX mar-
ket returns. This finding is important for future empirical and theoretical
research. First, empirical research could analyze the structure of the covari-
ance matrix and relate patterns in the exchange rate growth covariation to
economic fundamentals. Second, many theoretical models focus on forward
discounts without investigating the pricing implications of exchange rate
growth variances and correlations. Our results reveal the importance of an-
alyzing the economic mechanism that relates the covariance matrix to
expected returns in FX markets.

3.6 FX market volatility, correlations, illiquidity, and crash risk

So far, we have established that covariance and spread adjustments to the
carry trade are important to obtain a factor that is able to consistently price
the cross-section of FX returns. Next, we investigate whether other factors
that capture FX market volatility, correlations, illiquidity, or crash risk con-
tain the same information or whether our proposed mean-variance adjust-
ments are special.

Menkhoff et al. (2012) show the importance of the unexpected changes in
FX market volatility (VOL) in pricing currency returns. Karnaukh, Ranaldo,
and Soederlind (2015) and Mancini, Ranaldo, and Wrampelmeyer (2013)
document the importance of illiquidity (/LL) in explaining returns. Related
to crash risk, Rafferty (2012) introduces an FX skewness (SKEW) factor,
Lettau, Maggiori, and Weber (2014) construct a stock market downside risk
(DSR) factor, and He, Kelly, and Manela (2017) show that an intermediary
capital risk factor (INT) is priced in the cross-section of interest-rate-sorted
currency portfolios. Finally, Mueller, Stathopoulos, and Vedolin (2017) and
Verdelhan (2018) propose an FX correlation dispersion (HM LC) factor and
a dollar beta (HMLDB) factor to address time variations in correlations
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across currencies. In the following, we show that none of these factors is able
to explain the cross-section of FX market returns, and these factors do not
span the CSCAR factor.

VOL, ILL, SKEW, DSR, INT: In Tables B7 and B8, we test whether vola-
tility, illiquidity, or crash risk factors explain the cross-section of our 25 and
36 test assets and whether CSCAR is simply picking up these risks. VOL,
ILL, SKEW, and DSR are not traded, and, thus, we cannot test whether the
implied risk premium is equal to the historical average return and whether
abnormal returns in the time-series equations are jointly zero. Only the
SKEW factor has a robust and significant market price in the cross-
section. Either all other factors have consistently insignificant market prices
or the implied risk premium varies across sets of test assets and currencies.
Note that these findings are not inconsistent with the literature. We consider a
much larger set of test assets (i.c., sets of 25 or 36 test assets, while the liter-
ature focuses on only the five IntP), and thus, the bar for the factors to
succeed is higher than that for the original papers that introduce these factors.
The abnormal returns are always (for 25 or 36 test assets) statistically signif-
icantly different from zero for all model specifications. Therefore, we reject all
models without exception. Finally, the abnormal returns of CSCAR are al-
ways large and highly statistically significant (ranging between 5.83% and
6.97%), which implies that the priced risks captured by CSCAR are not
explained by VOL, ILL, SKEW, MKT, DSR, or INT.

HMLBD, HMLC: Table B9 reports the results for CAR-HMLDB and DOL-
HMLC, which are the two-factor models proposed by Verdelhan (2018) and
Mueller, Stathopoulos, and Vedolin (2017), respectively. These models are
designed to capture FX correlation risk. The abnormal returns in the cross-
section of the 25 test assets are jointly significantly different from zero and we
reject the CAR-HM LD B model. We also reject CAR-HM LD B (with p-values
less than 1%) if we use our set of 11 portfolios or our complete set of 36 test
assets. Moreover, we always reject the HM LC model independent of the set
of test assets or currencies as the abnormal returns are always significantly
different from zero both in the cross-section or in the time-series equations.’

Note that average returns of the HMLC portfolio are not robust across our sets of developed and emerging
currencies. fi 7 ¢ is -2% for the 15 developed currencies and 0.2% for the 29 currencies (results concerning 29
currencies being reported in the Internet Appendix). At first, this seems at odds with the -6.4% reported by
Mueller, Stathopoulos, and Vedolin (2017). However, their sample comprises G10 currencies from 1996 to
2013. In our data, [y c is -4.7% for 15 currencies and -1% for 29 currencies during the same period.
Moreover, they report an average return of -3.7% for the period from 1984 to 2013, while in our data
Tnrc 1s -2.4% for 15 developed currencies and -0.2% for 29 currencies. Therefore, our estimates of fi 7 ¢
in our analysis differ from those of Mueller, Stathopoulos, and Vedolin (2017) because of the sample period,
and, more importantly, the performance of HMLC appears to depend on the set of currencies. In comparison,
our estimates of i ;7,,; pp are in line with the estimates by Verdelhan (2018). The average return is 4.3% for
developed and emerging currencies from 1988 to 2016 in the data on Adrien Verdelhan’s website. In our data,
Lvrps is4.1% for 15 developed currencies and 4.2% for 29 currencies from 1988 to 2016. In our main analysis,
Tavrps is 3.9% for 15 developed currencies and 3.7% for 29 currencies.
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Finally, the abnormal returns of CSCAR are always positive and statistically
different from zero (ranging from 5.04% to 8.19%), suggesting that neither
the dollar beta nor FX correlation dispersion factors captures the priced risks
of CSCAR.

We conclude that CSCAR captures important information to price the
cross-section of FX market returns, and these risks are not explained by FX
volatility, correlation, illiquidity or crash risks. The finding that crash risk
does not explain the cross-section of returns reinforces the findings by Daniel,
Hodrick, and Lu (2014), Bekaert and Panayotov (2020), and Maurer, To,
and Tran (2020). These papers construct profitable currency trading strate-
gies with returns that cannot be explained by crash risks and question the idea
that crash risks are important for pricing in FX markets.

3.7 Predictability of FX market returns

The conditional covariance matrix (i.e., the variances and the correlation
structure of currency returns) and the forward discounts are both critical
to correctly price the cross-section of FX market returns. Since the forward
discounts and the conditional covariance matrix vary through time, CSCAR
dynamically adjusts its notional value and leverage in response to these
changes. This is essentially market timing, and we demonstrate above that
it is an integral feature for CSCAR to succeed in our tests, that is, factors that
are proportional to CSCAR at time ¢ but differ in their market timing are
rejected in our tests, while the CSCA R single-factor model cannot be rejected.
To provide additional support, in this section, we provide evidence that
CSCAR is able to predict future returns, volatility and illiquidity in FX
markets. The intuition is that if the conditional covariance matrix and for-
ward discounts are important determinants of conditional expected returns
(i.e., pricing) and if they vary through time, then FX market returns should be
predictable. We further show that global FX market volatility does not pre-
dict returns, which emphasizes the importance of the information contained
in the correlation matrix and forward discounts and the difference between
CSCAR and a volatility-managed carry factor in the spirit of Della Corte,
Sarno, and Tsiakas (2009), Daniel, Hodrick, and Lu (2014), Fleming, Kirby,
and Ostdiek (2001) and Moreira and Muir (2016).

For N currencies (plus the USD as the base), we have w elements in
the covariance matrix and N forward discounts. It is not practical to keep
track of so many state variables. However, the portfolio weights of CSCAR
are functions of the covariance matrix and forward discounts. Thus, CSCAR
summarizes the information of these state variables in terms of its portfolio
holdings, and the variables we are particularly interested in are CSCAR’s
notional value 3, [|0S5““R||, its leverage Y, 95’,SCAR and its turnover
Yo illOie — 0i 1] Intuitively, a large (small) notional value indicates that
absolute values of forward discounts are large (small) relative to the
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covariance matrix. Moreover, if CSCAR is the optimal investment strategy,
then the leverage summarizes the “attractiveness” of risky assets relative to
the risk-free asset. Finally, the turnover summarizes how much the covari-
ance matrix and forward discounts (and thus, portfolio weights of CSCAR)
change from month to month. Therefore, changes in the notional value,
leverage and turnover characterize changes in the conditional covariance
matrix and forward discounts. We use these three measures to capture the
variation of the original state variables. As we saw in Section 3.3, there is a
substantial variation in these three time series.

Our hypothesis is that the covariance matrix and forward discounts are
important state variables and conditional expected returns depend on these
state variables. Since we observe a substantial time-series variation in these
variables, then conditional expected FX market returns and volatility should
vary through time and returns and volatility should be predictable. As a
preview, we find strong evidence that FX market returns, volatility and illi-
quidity are predictable.

We run predictive regressions,

Yz,r+h = Cconst t Cirend? + § CiXjt + &,
J

h
where the dependent variable Y, ;) = % > Y, is the average realization of
=1

Y over the subsequent /» months after month ¢, ¢ captures any time trend, x;,
is the realization of predictor j in month ¢, ¢ is white noise, and €., Crrend
and ¢; are the regression coefficients.

Our first three predictors are the notional value, leverage, and turnover of
CSCAR. We further investigate the predictive power of the sign of the me-
dian forward discount x4 , = sign(median{fd; ,}). This measure is identical to
the conditioning variable used to construct DDOL, that is, if the median
forward discount is positive (negative) DDOL takes a long (short) position
in DOL. Additionally, we use global FX market volatility x5, = VOL, and
global FX market illiquidity x¢ , = ILL, as predictors. The dependent (pre-
dicted) variables Y are the future global FX market volatility VOL and illi-
quidity /L, and future returns of CSCARcg, HML, DOL, D-DOL, MOM,
and VAL."® We consider prediction horizons % of 1, 6, 12, and 18 months;
that is, we test whether our predictors x; are able to explain 1-month and up
to 18-month-ahead realizations of our dependent variables Y.

Table B10 reports the results of our predictive regressions for 15 developed
currencies. The notional value of CSCAR is significantly correlated with
future FX market volatility, illiquidity and returns of CSCARcr, CAR,
DDOL, and MOM. For returns of DOL and VAL, there is evidence of

If we are able to predict the returns of CSCARcg, then we can also predict the returns of CSCAR because the
two factors only differ with respect to the notional value. Results are available on request.
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predictability at longer horizons of 6 to 18 months. The notional value also
predicts volatility and illiquidity at a short horizon. We find similar statisti-
cally significant coefficients for the leverage of CSCAR. The turnover of
CSCAR has some power to predict volatility and illiquidity but there is no
robust evidence to predict returns. The sign of the median forward discount
consistently predicts the return of DOL and illiquidity, but we find no robust
evidence that it has the power to predict volatility or returns of the other
factors. Finally, past volatility has the power to predict future volatility and
similarly past illiquidity well forecasts future illiquidity. Volatility and illi-
quidity do not have a robust correlation with future FX market returns.

The adjusted R of the predictive regressions is impressive. At the I-month
horizon we are able to forecast between 53% and 59% of the variation in FX
market volatility and illiquidity. At the 6-, 12- and 18-month horizons the
adjusted R* decreases monotonically to 15%-32%. The adjusted R” to pre-
dict returns of CSCARcy at the 1-month horizon is 3.85%. It increases to
19.5% at the 18-month horizon. At the I-month horizon, the adjusted R to
forecast returns of CAR are 2.22%, DOL 5.12%, DDOL 1.37%, MOM
0.05%, and VAL -0.05%. R* increases to 9.52% for CAR, 25.7% for
DOL, 27.01% for DDOL, 0.11% for MOM, and 7.62% for VAL at the
18-month horizon.

The difference in the predictive power between the notional value and the
leverage of CSCAR and the global FX market volatility emphasizes the dif-
ference between the covariance and spread adjustment of the carry versus a
volatility-managed carry factor in the spirit of Della Corte, Sarno, and
Tsiakas (2009), Daniel, Hodrick, and Lu (2014), Fleming, Kirby, and
Ostdiek (2001), and Moreira and Muir (2016). CSCAR is timing the market
in response to changes in forward discounts, volatility, and correlations, all of
which are important. In contrast, volatility-managed factors are only
responding to changes in volatility.

In summary, we take the predictive power of the notional value and the
leverage of CSCAR as evidence that CSCAR is able to forecast future
expected returns and risks in FX markets. FX market volatility or illiquidity
do not have the same predictive power. This is consistent with our previous
finding that both the covariance and spread adjustments are important deter-
minants of conditional expected returns and that the correlation structure
between exchange rate growths is critical to price FX market returns. This is
an important finding for future empirical research to identify economic fun-
damentals that drive the time-series variation in the conditional covariance
matrix and forward discounts. Our finding also informs theoretical research
to focus on economic mechanisms responsible for a time-series variation in
the conditional covariance matrix of exchange rate growths and forward
discounts.
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. Model

To conceptually illustrate the intuition and properties of the pricing factor
based on covariances and spreads, we analyze CSCAR in the tractable inter-
national asset pricing framework of Lustig, Roussanov, and Verdelhan
(2014) (while relegating the technical derivations to the Internet Appendix).
Specifically, we consider the benchmark model of Mueller, Stathopoulos, and
Vedolin (2017), and perform a comparative analysis on their international
correlation risk factor and the CSCAR factor within that model. We extend
their analysis by explicitly computing the model-implied portfolio composi-
tion of the two risk factors. The computation maps the empirical factors to
their theoretical counterparts in the model, and helps elucidate CSCAR from
a perspective of the current literature in international finance.

4.1 Model and asset pricing quantities

We adopt and briefly describe the model setup of Mueller, Stathopoulos, and
Vedolin (2017) that belongs to the no-arbitrage log-normal setting of Lustig,
Roussanov, and Verdelhan (2014). We relegate the technical derivations to
the Internet Appendix. The international correlation risk factor is formulated
in a benchmark complete-market setting of N + 1 countries indexed by
i€{0,...,N}, where i = 0 designates the domestic (U.S.) country.
Country /’s SDF is given,

M;
log —2 —
0og M m; 141

it
= gz g2 — R —\Jr Vo, ()

in which «}', | and ¢, are two independent global shocks, and u} country-
specific independent shock. Local and global state variables (or, pricing fac-
tors), z, and z’, capture the local and global mean-reverting dynamics of the
prices of risks. The first global shock u}’, ; has (permanent) heterogeneous
prices of risk in different currencies determined by common z}’ and (perma-
nent) heterogeneous positive loadings {y’} (Lustig, Roussanov, and
Verdelhan, 2014).

As markets are complete, currency 7’s exchange rate against the USD
equals the ratio of SDFs, X;, = Mit \where X, i+ denotes the amount of

) T Moy
USD per unit of currency i, ’

Yoo, ) A -
log )l(tt = My — Mo = Kz (U, —ul ) + (V7 = V) YUy
1
2)

As a result, the covariances of exchange rates are implied in the model,
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Qii,t = Var, (log Al/t-H) = 2KZ[ + Diiz;%
it
' (©)
i X; ,
Q;, = Var, <log L log ”H) = Kz; + Dyzy,
' Xi; th '

wherein the ratio ;{ of state variables characterizes the disparity of the inter-
national correlation in FX markets. Countries of similar (dissimilar) loadings
v have lower (higher) correlations of their exchange rates against the USD
when this ratio is higher. The short-term risk-free rate is given by the condi-

tional expected growth rate, r;;, = —log E,{ ’”'} In the absence of arbi-

trages, the covered interest rate parity (CIP) holds between spot and
forward exchange rates, X;,(1 +ro,) = F;,(1 4+ r;,), so the exchange rate
forward discount equals the interest rate differential,

. Xz 1 i\ W
Jfdi, = log L — Fig —Toy = 5 (VO — )z 4)

Fi;

We consider a net-zero currency strategy of long currency i, short USD from ¢
to t+ 1. Given complete markets (2) and CIP (4), the realized and conditional
expected returns in USD of this strategy are

X; )
CTiq1 = log A}—H—l +fd;,

it

i 1 I TH
KZI(”?H — ) + \/_ f Zuyy + D) (VO -7z,

ECT;, = Et[CTi,tH] :fdm =Tir —Toy- (6)

®)

This result shows that the exchange rate forward discount is an unbiased
predictor of the future currency return.

Empirically, the international correlation risk factor is constructed as fol-
lows. First, currency pairs {ij} are sorted into 10 bins (deciles) based on the

conditional correlation p,( ’*f ! ,X”*'> of the exchange rates. The disparity in

the international correlation FXC, is measured by the difference between the

dverage conditional correlation in the top and bottom deciles. The exposure
" ve of a currency k to the international correlation risk factor is quantified
by the slope coefficient in the regression of the exchange rate growth ="+ Xk el

the innovations AFXC,,; = FXC,; — FXC,. Finally, the mimicking port-
folio HMLC, of the international correlation risk factor is constructed by

on

sorting currencies into bins based on their exposures {BI}XC}, and taking
equally weighted long positions in currencies in the top (FXCB,) and short
positions in currencies in the bottom (FXCB;) bin. The realized return of the
mimicking portfolio HMLC, | from ¢t to ¢t + 1 is
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HMLC 11 =Y icpxes, CTit — Y icrxes, CTis,

OFMLC _ 1 if j € FXCB, Q)
or
OMMEC = 1 if i € FXCB;,

where CT;,. denotes the realized currency return (5), and HZH MLC the port-
folio weight (up to a normalization constant).
The realized return of the CSCA R-mimicking portfolio is

N
CSCAR,;y =Y O0FFRCT; 10, with 077 = (Q'/dy),,  (®)
=1
where Q, is the exchange rate conditional covariance matrix (3), and fd, the
forward discounts (4).

By construction, HMLC (7) always assigns an equal absolute (long or
short) weight to every currency that contributes to the strategy (i.e., curren-
cies in the top and bottom terciles), and zero weight to other currencies.
Conceptually, currencies contributing to HMLC are determined based on
the covariation between the movements in currency k’s values X ,+1 and in
the international correlation FXC, 1. As u}',, is the only shock common to
these movements, the composition of HMLC (7) depends principally on the
exposures of currency values and the international correlation to the first
global shock u}', ;. On the other hand, CSCAR (8) allows for weights distrib-
uted among all available currencies, depending on the covariance matrix €,
(3) as well as the forward discount fd, (4). Both global, ), |, and country-
specific shocks, {u/_, }, contribute to the covariance matrix, and the compo-
sition of CSCAR (8). These differences in the portfolio weight determination
implies different factor returns and pricing properties of HMLC and
CSCAR.

4.2 Factor prices and pricing power of factors

We formalize the comparative analysis of factors based on the international
correlation (HMLC) and on covariances and spreads (CSCAR) by examin-
ing their market-based factor prices and pricing powers.

4.2.1 Market-based factor prices. The price of a risk factor quantifies the
required excess return to bear the risk of the factor, that is, the factor’s risk-
adjusted return or Sharpe ratio. We first consider a market-based perspective,
in which factor prices are determined by a pricing kernel constructed from
currency strategies in the FX market. This pricing kernel is the unique pro-
jector of the SDF on the space of currency returns (Hansen and Jagannathan
1991).
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In the model, the forward discounts equal the conditional expected cur-
rency returns (6). Note that the conditional covariance matrix Q, of exchange

rate growths X’:: is also the conditional covariance matrix of realized currency
t

returns CT; 41 (5). Hence, the N x 1 portfolio weight vector (8) of CSCAR
can be written as

OSSR — Q-VE,[CT, 1] = Var,(CTyyy, CTy1)  E[CT, 1],

where N x 1 vector CT,,; denotes a N realized currency returns
{CT;;11}, i € {1,..., N}. This expression shows that 0“““® are the optimal
weights of the mean-variance efficient portfolio in FX markets. As a result,
CSCAR delivers the highest Sharpe ratio among all FX strategies, including
HMLC and the standard carry factor CAR. CSCAR perfectly negatively
correlates with and represents the Hansen-Jagannathan minimum-variance,
that is, the unique pricing kernel linear in currency returns. Since HMLC is
another currency strategy, this result implies that in the USD denomination,
HMLC offers a lower Sharpe ratio and a higher pricing error than CSCAR in
pricing FX returns.

4.2.2 Pricing power in two specific limits. The above finding on the opti-
mality of CSCAR in pricing assets on the FX markets represents the U.S.
SDF projected on the return space of currency strategies. CSCAR therefore
has the highest correlation with the U.S. SDF among all currency strategies.

In the current model, as SDFs of all countries are specified (1), we can
directly compute, verify, and analyze the model-implied correlation between
the U.S. SDF and HMLC and CSCAR factors. This analysis exhibits how
information about first and second moments of currency returns are com-
bined to formulate CSCAR, in difference with the formulation of HMLC
and CAR. It also reconfirms the outperformance of CSCAR over other FX
factors explicitly in two limits of interest, namely, the large and small inter-
national correlation parity = A (3). Note that the correlation between a factor
and SDF can be either posmve (hedge factor) or negative (risk factor). In
what follows we are interested in the absolute value of this correlation.

Small international correlation disparity: In this limit, we can obtain a
power series expansion in the small ratio Z for all pricing quantities in the
model. In the leading order of appr0x1mat10n the conditional correlation
between a factor return F,,; € {CSCAR,,, HMLC,,,} and the U.S. SDF
is
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ul F
Z: 0
=

- | N N
V1 +%\/ D057 + 52 (00)
i=1 i=1

where 05 , denotes the portfolio composition of factor Fy,;.

The international correlation risk factor assigns equal weights but with
opposite signs to the contributing currencies in the top and bottom terciles
(7). As a result, the sum of portfolio weights associated with HMLC, and
hence, its correlation (9) with the U.S. SDF approach zero in the limit of

M,
Com(ml, °”“> _ .o

MOt

)

small international correlation disparity, Corr, (HMLCM,AX/["'(;“) ~ 0.

Intuitively, when there is little disparity in international correlation, a strategy
based on the correlation disparity like HM LC receives little signal, resulting
in a factor of weak pricing power in that limit.

In contrast, as CSCAR assigns heterogeneous weights to all currencies, the
sum of CSCAR portfolio weights and its correlation with the U.S. SDF
remain nonzero in the limit of small international correlation disparity

|Corr, (CSCAR,H, Mﬁjé*/ ‘>| > 0. Intuitively, this is because CSCAR employs

signals from both FX covariances and spreads, the latter is characterized by
forward discounts (6) and remain strictly heterogeneous across different for-
eign currencies i.'" The resultant CSCAR correlates more strongly with the
U.S. SDF and has a stronger pricing power in the USD denomination than
does HMLC in the limit of small international correlation disparity.

Large international correlation disparity: In this limit, we can also explicitly
compare the performance of HMLC and CSCAR. Intuitively, when z}’ > z,,
the exposure of a currency i to the international correlation disparity FXC,.
is determined principally by the loading differential (\/;0_ — \/7 ) in the dom-
inant term in (5). As a result, HMLC (7) assigns largest (long and short)
weights to currencies that has extreme (largest and smallest) loadings y".
However, the composition of HMLC is confined to a set of equal absolute
weights. Such a constraint places a lower bound on the volatility that HMLC
can achieve, therefore an upper bound on its Sharpe ratio because all cur-
rency premiums remain finite in the limit of z}” > z,. A similar argument
applied on the carry strategy shows that the Sharpe ratio of CAR is also
subject to an upper bound.

In the same limit, the dynamics of all exchange rates are dominated by the
common global shock u}', ; (2). Hence, exchange rates in every pair Xj, X; are
either almost perfectly correlated (if 7' — 7° and 7/ — 7° have the same sign) or
almost perfectly negatively correlated (if ' — y° and ¥ — y° have different

State variable z’ is a common multiplicative factor in (4), so it does not influence the heterogeneity in the forward
discounts and the associated portfolio weights of CSCAR.
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signs). By taking appropriate positions in these highly (positively or nega-
tively) correlating currencies, one can formulate currency strategies of very
small volatilities. Because heterogencous currency premiums (6), (4) do not
cancel each other in this formulation, these currency strategies have a high
Sharpe ratio. This argument shows that CSCAR, as a mean-variance optimal
strategy in FX markets, necessarily has a high Sharpe ratio, and thus, strictly
dominates the limited Sharpe ratios of HMLC and CAR established earlier in
the same limit. The following proposition summarizes the comparative statics
of HMLC and CSCAR in the benchmark model of the international
correlation.

Proposition 1.

(i) CSCAR represents the unique minimum-variance pricing kernel of FX
markets, hence, offers the highest Sharpe ratio in the USD denomination
among all traded currency strategies.

(if) CSCAR has a higher correlation with the model’s full U.S. SDF, hence,
a higher power in pricing traded financial assets than HMLC in the USD
denomination in both limits of large and small FX correlation disparity.

(iii) As we explained earlier, the general optimality result (i) implies a
specific result (i) in the benchmark model. Several further observations
that place CSCAR in light of a broader class of models are in order.

4.2.3 Discussion. First, the second global shock w7, | has an identical price
in all currencies (1). This eliminates u 1 from exchange rates (2), generates a
negative relationship between currency returns and exposures fryc to the
international correlation risk, and is a key feature of the benchmark model by
Mueller, Stathopoulos, and Vedolin (2017). This feature also implies that
exchange rates highly (positively or negatively) correlate in the limit of a large
FX correlation disparity, implying that the well-diversified CSCAR factor
achieves a superior Sharpe ratio. In retrospect, working with the benchmark
model enables an illustration of CSCAR’s efficiency and outperformance
versus the model’s characteristic factor HLMC, while upholding the same
key feature of the FX correlation risk.

Second, beyond the benchmark model, the more general framework by
Lustig, Roussanov, and Verdelhan (2014) replaces a single z, by multiple
country-specific local state variables {z/}. Such a diverse set of country-
specific shocks not only weakens the relationship and interpretation of a
FX correlation risk factor with currency returns but also enriches the impli-
cations for efficiency of FX strategies. Conceptually, forward discounts cease
to exactly equal currency risk premiums,

Et[CTi.,tJrl] = fd;, — X(Zi - Z(;)); (10)

or CSCAR is not strictly the minimum-variance SDF in FX markets.
Practically, however, the calibration in Lustig, Roussanov, and Verdelhan
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(2014) shows that parameter y, that is, the difference between currency risk
premiums and forward discounts, is not significantly different from zero
when the model is confronted by FX data. Furthermore, when the global
state variable z/ dominates the local counterparts {z*}, this difference is also
small. Either case indicates the efficiency and optimality of CSCAR as (ap-
proximately) the Hansen-Jagannathan SDF projector on the FX market
return space. Third, CSCAR’s construction centers on the combined effi-
ciency of spreads and covariances. With respect to spreads, strategies exam-
ined in Lustig, Roussanov, and Verdelhan (2014) and Mueller,
Stathopoulos, and Vedolin (2017), including the carry, dollar carry, uncon-
ditional HML carry,'? and the FX correlation HMLC (7), all assign equal
weights to the currencies contributing to these strategies. CSCAR’s portfolio
weights vary quantitatively with currencies’ spreads and keep CSCAR’s
expected excess return away from zero in states where signals from FX
correlations are weak as in the premise of Proposition 1. With respect to
covariances, whenever FX markets have enough assets to reasonably diver-
sify the portfolio risks CSCAR delivers a high Sharpe ratio.

In sum, a necessary (and sufficient) condition for the dominance of
CSCAR over other FX factors is that forward discounts equal expected
currency premiums. In the no-arbitrage multifactor framework of Lustig,
Roussanov, and Verdelhan (2014), parametric values calibrated from FX
data do not statistically significantly rule out this equality. Importantly, in
this framework, the same model parameters enter the model-implied forward
discounts and expected currency premiums, which justifies the employment
of the former as a signal to achieve the efficiency and pricing power in FX
markets via the construction of the CSCAR.

Conclusion

We adjust the Carry (CAR) factor to account for the covariance matrix of
exchange rate growths (covariance adjustment) and the size of forward dis-
counts (spread adjustment). We call this factor the Covariance- and Spread-
adjusted Carry (CSCAR).

Using various sets of test assets and data of 15 developed and 29 developed
and emerging currencies from 1984 to 2016, we find that that the single-factor
CSCAR model is able to price the cross-section of average FX market
returns. In contrast, carry factors that do not use all the information of the
covariance matrix and forward discounts are unable to price the cross-section

The carry is the usual portfolio strategy taking long (short) positions in foreign currencies against the USD based
on whether foreign interest rates are higher (lower) than the U.S. interest rate. The dollar carry takes a long
(short) position in an equally weighted basket of foreign currencies against the USD when the average of foreign
interest rates is higher (lower) than the U.S. interest rate. The unconditional HML carry is similar to the carry,
but is based on the time-series averages of interest rates, and hence, do not feature rebalancing of the portfolios.
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of FX returns. Moreover, popular single- and multifactor models do not span
the CSCAR factor and are rejected in our tests.

We further show that the conditional covariance matrix of exchange rate
growths and forward discounts vary through time, and because they are
important determinants of conditional expected returns (i.e., pricing), FX
market returns are predictable 1 to 18 months ahead. We also document a
substantial time-series variation in the conditional covariance matrix of ex-
change rate growths and forward discounts, and it is critical to account for
this variation to price assets. Future empirical research should investigate the
underlying economic fundamentals that drive this time-series variation.
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A Technical Details

A.1 Sequentially Efficient GMM Estimation

This section provides details on the estimation of our factor pricing models in Section 3 using
sequentially efficient GMM (Hansen 1982; Cochrane 2005; Shanken and Zhou 2007). We refer to

1
the set of (1 + K) N moment conditions E[ ( e

t

> ® (R, — oo — fF,)] = 0 as the time-series pricing

equations, and the N moment conditions E[R; — 7l {nx1} — B7] = 0 as the cross-sectional pricing
equations. We first solve

Ik 0 0
Ar®) =0witn 4= | e 0
0 0 Lixn
0 0 i
where 7, is an identity matrix with dimension x x x and gT(A) :lTih,(/;) with

=1

F—p
1 o~
h,(l; )= ® (R —o — BF,) , 1s the sample estimate of g(b). The closed-form solution

Ry =%olwx1y — BY

i
@ 1
()
B F,
70 Lixn N T
e o] e
7 Br B

T
with E[x] being estimated using the sample average lTZ x;. Note that we choose A; to fully

of b is

=1

. % Yo . . S~ .

separate the estimate of i, ( ) ,and < > . Therefore, the point estimate of 4 is identical to the
7

estimate in two-stage time-series and cross-sectional regressions (Fama and MacBeth 1973). The

covariance matrix of » and gr(g ) are estimated as follows:

Cov(b) = = [41D( ) A S(B) ([ D(B)) A1)

Cov(gr(b)) = 1T<1(2+1<)N - D(

with the [K + (24 K)N] x [K+ (1 + K)(1 + N)] matrix of partial derivatives

)[AiD(b)] " 41)S(b) (2 kn — D)4 D(B)] " Ar)',
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—Ix 0 0 0 0
D)= dgr(B) _ 0 ~Iy —E[F)® Iy 0 0
o 0 —Efjely —EFQF]®Iy 0 o |’
0 0 7' @Iy — vy —B

and following Newey and West (1987) the [K + (2 + K)N] x [K + (2 + K) N] matrix S(b), which
is a consistent estimate of the covariance matrix E[g(h)g(bh)'],

~ 1& b ~ o,
S5) = 73 hi +§j( 1) _1§j(m o sBY + (B (B)).
with L = T'/*. Note that the estimate S(b) takes into account cross- and autocorrelations and
heteroscedasticity. In a second step, we solve

Ix 0 0
Asgr() =0 with Ay = | 0 Lasxw 0
0 0 DG)s(b)!
where the N.x (1 + K) matrix D*(b) = (,1{le} ,ﬁ) is the N x (1 + K) lower, right sub-
matrix of D(b) and S* (b) isthe N x N lower, right submatrix of S(b). We only adjust the weights
on the set of the N cross-sectional pricing equations using the information of the first-stage error
covariance matrix S(b) This is the idea of sequentially efficient GMM. The alternative weighting
matrix A2 = D(b)’S(b)’ is theoretically more efficient than A,, but in practice inverting the
matrix S (b) can be difficult to do, and estimation errors can lead to nonrobust results. Shanken
and Zhou (2007) show that more robust estimates are obtained with sequentially efficient GMM,

that is, estimating (1, «, and) f8 in a consistent but inefficient way, and then, given the estimates ﬁ,
estimate yo and 7y using an efficient weighting matrix. The closed-form solution of 5 is

i-ia=ap=p
(%5):—0r£w$@> D(5)) D' (b)S(B) IR,

Cuv(l;) and Cov(gr(b) A ) are analogous to Cov(l? ) and Cov(gr(g)) simply be replacing 4; by A,
and b by b. Cov(2) is given by the N x N submatrix between rows K + 1 and K + N and columns
K+ 1 and K + N of Cov(b ) Var(y,) is equal to the element on row K+ (1 4+ K)N + 1 and
column K + (1 + K)N + 1 of Cov(b). Yar(3,) is the element on row K + (1 + K)N + 1 4 kand

column K + (1 + K)N + 1 + kof Cov(l;) Var(liy,) is equal the element on row k and column k of
Cov(h ) Cov(uk,yk) is equal to the element on row & and column K+ (1 + K)N +1+k of
Cov(b ) CLov(@ ), with @ = E[R/] — yol{le} - ﬁy, is the N x N lower, right submatrix of
Cov(gr(b)).
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B. Tables

Table B1
Portfolio weights of CSCAR
A. Fifteen devel-

oped currencies
Mean  Median SD Skew Kurt Min Max 1d;

Italy 0.227 0.064  0.470 1.712 8.798  —1.249 2574 4.03
Norway 0.217 0.076  0.410 2.832  13.518  —0.333 2999 2.10
United Kingdom 0.174 0.113  0.329 0.626 8.008  —1.489  1.659 1.76
New Zealand 0.170 0.106  0.266 2597 14936  —-0435  2.163 3.84
Australia 0.132 0.111 0243  —0.275 4674 —-0916  0.787 3.19
Sweden 0.039 0.020 0315 —2.198 31438 —-2.739  1.777 1.46
Belgium 0.033 0.042  0.287 0.160 6.008  —1.082  1.208 0.67
Denmark 0.007 —0.026  0.244 2.010 17.325 —1.180  1.927 0.74
Canada 0.002 —0.020  0.318 0.763 8972  —1.619 1450 0.80
France —0.043 —0.026 0211  —0.637 9917 —1.215 0.903 1.55
Euro —0.073 —0.051 0.124  —2.600 22313 —1.013 0466 —0.29
Netherlands —0.088 —0.050  0.198  —1.294 7.618  —1.006  0.568  —0.68
Germany —0.123 —0.057  0.246  —2.061 8.537  —1.362 0305 —0.93
Switzerland —0.197 —0.137  0.278 0.221 16.500 —1.836  1.968 —1.72
Japan —0.258 —0.198  0.301 —1.576 6.502  —1.624  0.508  —2.49

B. Twenty-nine de-
veloped and
emerging currencies
Mean Median SD Skew Kurt Min Max fd;

Mexico 0.339 0.163  0.503 1.620 5.645  —0.747 2423 6.40
Portugal 0.333 0.291 0.322 0.913 4.001 —0.327 1465 5.36
Brazil 0.311 0273  0.285 1.215 5394  —0.350 1.355 9.26
Greece 0.311 0.266  0.397 2,662  13.622 —0.174  2.274 4.78
Spain 0.237 0.193  0.292 0.183 5980  —1.082  1.351 4.85
Iceland 0.210 0.135  0.238 1.358 4797  —0.127  1.119 6.08
South Africa 0.199 0.124  0.328 1.829 8273  —-0.642 1.751 6.55
Hungary 0.190 0.105  0.341 1.625 9.036 —1.101 1.845 5.65
New Zealand 0.155 0.093  0.272 1.995 11.105  —0.505  1.946 3.84
Italy 0.108 0.039  0.353 1.128 6.177  —1.092  1.643 4.03
United Kingdom 0.067 0.023  0.294 1.144  11.850  —1.490 1.977 1.76
Norway 0.050 0.006  0.315 3223 21944  —1.112 2466 2.10
Australia 0.049 0.023  0.240 0.338 5951 —0.896  1.337 3.19
Belgium 0.030 0.027 0205  —-0.152 3.754  —0.648  0.597 0.67
Ireland 0.018 —0.009  0.266 0.128 5.002  —0.985  0.920 2.03
Poland 0.016 —0.010  0.192 2.099  16.545  —0.708  1.302 2.51
Taiwan 0.009 —0.007  0.223 2440 14521  —-0.629 1.270  —0.85
South Korea 0.001 0.008  0.202  —0.277 4.068  —0.664  0.578 1.27
Canada —0.006 —0.011 0.320 0.639 9.263  —1.406 1.821 0.80
Czech Republic —0.023 —0.024  0.258 0.492 6.443  —1.028  1.029 0.87
Sweden —0.023 —0.003  0.278 —1.317 14880 —2.076  1.463 1.46
Denmark —0.034 —0.036  0.180 2228  18.435  —0.755  1.440 0.74
Euro —0.061 —0.045  0.103  —0.064 8376  —0.457 0481 —0.29
Singapore —0.069 —0.021 0237 —-2.614 17.841 —-1.870  0.696 —1.17
France —0.088 —0.062 0210 —1.978 12296 —1.314  0.540 1.55
Netherlands —0.126 —0.105  0.192  —0.448 9.120  —-1.035 0.811  —0.68
Germany —0.133 -0.099  0.210 —2.233 12.339  —1.344 0300 —0.93
Switzerland —0.180 —0.111 0.263  —1.086 5899 1437 0.682 —1.72
Japan —0.206 —0.163  0.276  —1.470 7.036  —1.794 0352 249

Summary statistics of portfolio weights 6<% = Q, .

CSCAR incorporates information from both the robust covariance matrix of exchange rate growths and the
forward discounts. fd, is the vector of forward discounts of all exchange rates against the USD, and Q, is a
robust version of the conditional covariance matrix Q, of all exchange rate growths at the end of month 7. fd; (in
the last column) is the average annualized forward discount in percentage points of the exchange rate between
currency i and USD. The data of 15 developed countries (panel A) and 29 developed and emerging currencies
(panel B) are from January 1984 to February 2016.
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Table B2
Single-factor CSCAR pricing model

A. Fifteen developed

currencies
5 IntP 5 Mom P & 5 15 6 DB & 4 25assets 11 36 assets
ValP Assets FXCB assets
Yo 0.68 —1.02 —-0.85 1.06 0.85 1.62*  0.71
. (.36) (-.51) (-.51) (.62) (77)  (1.87) (1.44)
Y escar 9.01* 9.39%* 9.59% % 10.49 8.34%H% 6. 40%** 7 14%%*
(2.48) (2.48) (3.23) (.93) (3.13) (3.59) (4.21)
R* (%) 90.48 35.46 45.55 15.22 31.47 83.69 53.33
Fescar — Bescar 0.61 1.00 1.20 2.09 —0.06 —2.00* —1.26
(.20) (31 (.54) (.20) (.03) (2200 (1.32)
Joint test of cross-sectional
regression & = 0:
$>-test 0.69 14.61 15.98 8.75 27.07 10.45 4557
(p-value) (.95) (.10) (.31) (.46) (.30)  (40) (1D
Joint test of time-series re-
gression o = 0:
F-test 0.17 1.46 1.06 1.09 1.03 1.38 1.19
(p-value) (97) (.15) (.39) (.37) (43) (18 (22
B. Twenty-nine developed
and emerging currencies
5 IntP 5 MomP 15 6 DB 25 11 36
& 5 ValP assets & 4 FXCB  assets assets assets
Jo —0.39 —1.08 —1.34 2.56* 132033 0.03
~ (-22) (-.52) (-.83) (2.26) (1.43)  (67) (.10)
Y escar 10.22* 11.71%* 12.07#%* 5.62 10.44%%%9 68***10.57***
(2.42) (2.42) (3.30) (.74) (3.32) (4.44) (5.39)
R* (%) 53.88 29.59 4491 6.65 29.27 96.07 77.39
Vescar — Bescar —0.61 0.87 1.24 —5.21 -0.39 —1.15 —-0.26
(.18) (.19) (.42) (.76) (.16) (1.54) (.19)
Joint test of, cross-sectional
regression @ = 0:
12-test 7.25 11.36 17.18 11.41 31.07 11.53 47.39*
(p-value) (.12) (:25) (.:25) (.25) (.15)  (.32)  (.08)
Joint test_of time-series re-
gression o = 0:
F-test 1.44 1.19 1.19 1.49 1.21 1.03 1.20
(p-value) (21) (:30) (.28) (.14) (22) (42 (21

Estimates of the cross-sectional pricing equation E[R,] = 7o 1{yx1) + f7 using sequentially efficient GMM for
CSCAR as a single pricing faclor Appendix A.1 provides details about the estimation. CSCAR factor return,
> H(SCAR CTisr1s 9“("”2 = Q fd,, mcorpordte the information of both robust covariation between exchange
rate growths and the forward dlscounts R?is the model fit of the cross-sectional pricing equation. y2-test is the
joint test statistic of «if = 0 for all test assets i € {1,..., N}. F-test is the joint test statistic of o; = 0 for all lest
assets 7 € {1,..., N}. t-statistics are in parentheses below coefficient estimates, and p-values are below the -
and F-test statistics. Errors are estimated taking into account auto- and cross-sectional correlations and hetero-
scedasticity according to Newey and West (1987). The data are our set of 15 developed countries (panel A) and
29 developed and emerging currencies (panel B) from January 1984 to February 2016.

<l

*p < .05;

*Hkp <01
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Table B3

Carry and dollar carry (without market timing)

Fifteen developed

currencies
25 Test assets Thirty-six test assets
Yo 3.46%* 0.27 1.35 1.69%** 1.12%%  1.09%*
R (2.64) (.19)  (1.06) (3.48) (2.26)  (2.37)
YoorL —2.96 -0.39 -—1.46 —1.44 -0.78  —0.75
R (—1.52) (=.20) (-.76) (—.93) (=.53)  (-.50)
Year 4.36%* 4.06%*
R (2.47) (2.50)
YppoL 5.13%* 3.82%*
R (2.58) (2.55)
VNSCAR 4.84% % 3.71%%*
(2.96) (2.96)
R? (%) _ 19.83 25.11 3530 38.58 40.64 45.77
Ypor — Epor —4.66%** —2.08 —3.15%* —3.13%* —2.48*% —2.44*
R N (3.02) (1.27)  (2.08) (2.63) (2.01)  (2.00)
Vear — Hear —0.87 —-L16
~ ~ (94) (.96)
Jopor — Rppor 0.04 —-1.27
PS ~ (.02) (1.44)
Jnscar = Bnscar -0.92 —2.06%*
(.78) (2.05)
Joint test of cross-sectional
regression & = 0:
7> -test 39.75%* 37.25%% 33.13* 63.26%%* 62.26%%% 592 ***
(p-value) (.02) (.03) (.08) (.00) (.00) (.00)
Joint test of time-series re-
gression o = 0:
F-test 1.52% 1.39 1.21 1.93 %k 174355 ] 4%k
(p-value) (.05) (.10) (:23) (.00) (.01) (.o1)
Abnormal return of
CSCAR in the cross-sec-
tion (oggc ) and time-se-
ries (dcscar):
0EScAR 5.42%%% 6.66%*%  536%**
(3.67) (4.16)  (3.50)
OCSCAR 6.51%** T.A43FkE 5 60%**
(4.69) (4.62)  (4.23)

This table reports estimates of the cross-sectional pricing equation E[R;] = yo1{yx1y + f7 using sequentially
efficient GMM. CAR is the equally weighted Carry factor; NSCAR further adjusts for the spread in forward
discounts at a constant notional value; DOL invests equally in all foreign currencies against the USD; and
DDOL takes a long or short position in DOL depending on the median forward discount. R* is the model fit of
the cross-sectional pricing equation. The y>-test is the joint test statistic of o =0 for all test assets
i€ {l,...,N}. The F-test is the joint test statistic of o; = 0 for all test assets i € {1,..., N}. t-statistics are in
parentheses below the coefficient estimates. Errors are estimated taking into account auto- and cross-sectional
correlations and heteroscedasticity according to Newey and West (1987). The data are our set of 15 developed

countries from January 1984 to February 2016.

*p <0.1;
%) <0.05;
sy <0.01.
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Table B4
Managing volatility
Fifteen developed

currencies
Twenty-five test assets Thirty-six test assets

Jo 2.96%* 0.70  —1.09 1.19%* 1.20%* 0.91

R (2.41) (.54) (-.64) (2.40) 2.57)  (1.23)

oL —2.49 -1.02  1.54 —1.10 -0.93 0.09

~ (-1.32) (=.51)  (.66) (—.74) (—.63) (.05

YpporL 6.81%%* 4.43%*

. (3.03) (2.65)

Fear 4.58%* 3.76%*

. (2.39) (2.15)

VAR 10.39** 11.86* 3.45% 3.93*

~ (2.62) (1.85) (1.82) (1.87)

TNSCAR 5.82%* 4.2 %%k

. (2.66) (3.07)

TNSCARyw 17.20%%* 16.53%* 6.32%%  6.96%*

~ 3.77)  (2.22) (2.45)  (2.56)

T mom 1.56 0.96

. (1.44) (1.00)

?’VAL 4.80%** 3,78k
(3.31) (2.77)

R? (%) 32.26 43.37  61.60 34.55 38.35 52.56

Joint test of cross-

sectional regression

=0

$>-test 32.36% 26.38  14.40 70.18%** 68.90%** 52 82%**

(p-value) (.09) (.28) (.64) (.00) (.00) (.00)

Joint test of time-

series regression

=0

F-test 1.47* 1.40% 0.84 .93 1,943k ] 7]k

(p-value) (.07) (.10) (.68) (.00) (.00) (.01)

Abnormal return of
CSCAR in the
cross-section
(xZZSCAR) and time-
series (dcscARr):

SESCAR 6.10%%* 5.56% %% 4.76%**
(4.02) (3.46)  (3.43)

XCSCAR 5.27H** 5.40%%%* 3 Ok
(4.14) (3.97)  (3.56)

This table reports estimates of the cross-sectional pricing equation E[R,] = Yo l{nx1y + By using sequentially
efficient GMM. Details about the estimation are in Appendix A.1. CAR is the equally weighted Carry factor; the
volatility-managed CA Ry ,, adjusts for the variance of CAR’s return; NSCA R adjusts for the spread in forward
discounts at a constant notional value; the volatility-managed NSCARy y, adjusts for the variance of NSCAR’s
return; DOL invests equally in all foreign currencies against the USD; DDOL takes a long or short position in
DOL depending on the median forward discount; MOM (momentum) sorts currencies based on the past
performance; and VAL (value) sorts currencies based on the real exchange rate. R? is the model fit of the
cross-sectional pricing equation. The y>-test is the joint test statistic of of =0 for all test assets
ie{l,...,N}. The F-test is the joint test statistic of o; = 0 for all test assets i € {1,..., N}. t-statistics are in
parentheses below the coefficient estimates. Errors are estimated taking into account auto- and cross-sectional
correlations and heteroscedasticity according to Newey and West (1987). The data are our set of 15 developed
countries from January 1984 to February 2016.

*p <0.1;

**p <0.05;

*Hkp <0.01.
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Pricing Implications of Covariances and Spreads in Currency Markets

Table BS
Importance of spread and covariance adjustments

Fifteen developed

currencies
Twenty-five test assets Thirty-six test assets

Yo 0.47 0.07 1.19 1.09%* 0.94%* 1.18%*

R (41 (.06) (1.08) (2.39) (2.03) (2.57)

Vscar 4.90%* 4.30%**

R (2.18) (2.73)

VvScar 7.84%%* 7.00%**

N (2.85) (3.83)

VeECAR 10.22%* 2.64
(2.33) (1.50)

R (%) 9.43 20.93 17.49 37.39 46.12 3292

Vscar — Hscar —-1.01 —Lel

. N (.62) (1.48)

Tvscar — Hyscar —1.34 —2.18%

R ~ (.70) (1.90)

Vercar — Heecar 3.27 —4.3 1
(.86) (3.49)

Joint test of, cross-sectional

regression o = 0:

7> -test 42.04%* 29.72 30.07 63.82%%* 53.25%%69.43***

(p-value) (.o1) (.19)  (.18) (.00) (.02)  (.00)

Joint test of time-series re-

gression o = 0:

F-test 1.53* 1.05 1.46* 1.78%*% 1.44% 1.89%**

(p-value) (.05) 41 (07 (.00) (.05)  (.00)

Abnormal return of

CSCAR in the cross-sec-

tion (aggeyg) and time-se-

ries (dcscAR):

0EScAR 5.73%%* 4,145 5.08%%*

(3.99) (3.24) (4.27)
OCSCAR 6.22%** 4.05%%* 5.16%%*
(4.76) (3.50) (4.65)

This table reports estimates of the cross-sectional pricing equation E[R;] = yo1;yx1y + f7 using sequentially
efficient GMM. Details about the estimation are in Appendix A.1. CAR is the equally weighted Carry factor;
SCAR adjusts for the spread in forward discounts and times the market based on the forward discounts;
VSCAR further adjusts for the variances (but not the correlations) of currency returns; and CECAR adjusts
for the correlations of currency returns and the sign of the forward discounts. R* is the model fit of the cross-
sectional pricing equation. The y>-test is the joint test statistic of o} = 0 for all test assets i € {1,..., N}. The F-
test is the joint test statistic of o; = 0 for all test assets i € {1,..., N}. t-statistics are in parentheses below
coefficient estimates, and p-values are below the 7°- and F-test statistics. Errors are estimated taking into account
auto- and cross-sectional correlations and heteroscedasticity according to Newey and West (1987). The data are
our set of 15 developed countries from January 1984 to February 2016.

*p <0.1;

**p <0.05;

**kp <0.01.
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Table B6
Importance of market timing and robust estimate of covariance matrix

Fifteen developed

currencies
Twenty-five test Thirty-six test
assets assets
Yo 1.37 1.28  1.78%* 1.09%* 0.95%* ].34%**
. (1.27) (1.21) (1.73) (2.38) (2.05) (2.94)
Jescaren 7.69%*% 4.26%*
N (2.99) (2.47)
Fescare 8.77%%x 6334+
. (3.29) (3.49)
P CSCARm 10.86 9.94%
(1.68) (1.98)
R (%) 24.05 29.34  7.29 36.65 43.10 37.23
Vescarey — Bescare 1.80 —1.62
~ ~ (.86) (1.44)
Vescarey — Bescarer 0.57 —1.87*
~ ~ (:29) (1.71)
Vescarm — Bescarm, 6.00 5.08
(.93) (.90)
Joint test of, cross-sectional
regression & = 0:
$2-test 31.70 28.50 48.38%** 66.63%%* 64.01%#%7] 45%%*
(p-value) (.13) (.24)  (.00) (.00) (.00)  (.00)
Joint test of time-series re-
gression o = 0:
F-test 1.35 1.16  2.09%** 1.86%** 1.83%#% 2 ] 3%%*
(p-value) (.13) (:28)  (.00) (.00) (.00)  (.00)
Abnormal return of
CSCAR in the cross-sec-
tion (oggc ) and time-se-
ries (dcscar):
UEsCAR 4.82%** 3. 11HEx 5. 53%k
(3.88) (3.14)  (3.38)
OCSCAR 4.96%** 2.79% % T 65kH*
(4.75) (4.22) (4.81)

This table reports estimates of the cross-sectional pricing equation E[R;] = 7,1 yx1y + By using sequentially
efficient GMM. Details about the estimation are in Appendix A.1. CAR is the equally weighted Carry factor;
CSCAR adjusts for both robust covariation between exchange rate growths and the forward discounts;
CSCARcR further features a constant notional value and CSCAR(y features a constant volatility; and
CSCARyy is similar to CSCAR but employs the original (nonrobust) covariation between exchange rate
growths. R is the model fit of the cross-sectional pricing equation. y>-test is the joint test statistic of o =0
for all test assets i € {1,..., N}. F-test is the joint test statistic of o; = 0 for all test assets i € {1,..., N}. t-
statistics are in parentheses below coefficient estimates, and p-values are below the 2~ and F-test statistics.
Errors are estimated taking into account auto- and cross-sectional correlations and heteroscedasticity according
to Newey and West (1987). The data are our set of 15 developed countries from January 1984 to February 2016.
*p <0.1;

*p <0.05;

**Ep <0.01.
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Pricing Implications of Covariances and Spreads in Currency Markets

Table B7

Volatility, illiquidity, and skewness

Fifteen developed

currencies
Twenty-five test Thirty-six test
assets assets
Yo 3.12%* 2.84%* 1.78 1.58%** 1.49%*% 1.56%**
(2.35) 2.27)  (1.34) (3.03) (3.13)  (3.24)
YpoL —2.80 -2.59 —1.89 —1.36 —1.34  -1.20
R (-1.44) (-1.40)  (-1.00) (-.89) (-.89) (-.83)
YvoL —4.09 —1.68
R (-.96) (-.46)
YL -1.90 —1.62
. (-.39) (-.48)
Vskew —13.41%* —11.72%%*
(-2.69) (-3.20)
R (%) _ 6.41 4.56 23.90 31.66 31.68 44.25
Ypor — Epor —4.49% % —4.28%H% 3 5% —3.06** —3.03%% —2.89%*
(2.92) (2.88)  (2.18) (2.59) (2.68)  (2.29)
Joint test of cross-sectional
regression & = 0:
72-test 46.57*** 50.35%** 37.47%* 72.12%** 73.46%%* 65.16%**
(p-value) (.00) (.00) (.03) (.00) (.00) (.00)
Abnormal return of
CSCAR in the cross-sec-
tion (otggeqr):
0ESCAR 6.78%*%* 6.97**%  583%**
(4.45) (4.32)  (3.81)

This table reports estimates of the cross-sectional pricing equation E[R,] = ylinx1y + fy using sequentially
efficient GMM. Details about the estimation are in Appendix A.1. DOL invests equally in all foreign currencies
against the USD; VOL characterizes unexpected changes in the global FX market volatility; /LL characterizes
unexpected changes in the global FX market illiquidity; and SKEW characterizes the global FX market skew-
ness. R? is the model fit of the cross-sectional pricing equation. The y2-test is the joint test statistic of o =0 for
all test assets i € {1,..., N}. The F-test is the joint test statistic of o; = 0 for all test assets i € {1,..., N}. t-
statistics are in parentheses below coefficient estimates, and p-values are below the y2- and F-test statistics.
Errors are estimated taking into account auto- and cross-sectional correlations and heteroscedasticity according
to Newey and West (1987). The data are our set of 15 developed countries from January 1984 to February 2016.

*p <0.1;
**p <0.05;
wkp 20,01,
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Table B8

Downside risk and intermediary capital ratio

Fifteen developed

currencies
25 test assets 36 test assets
Yo 1.44 1.40 1.21 2.14%%% 1.68%%* 1.88%**
(1.48) (1.41) (1.15) (4.07) (3.03) (3.44)
PMKT 11.26 7.63 9.37 —5.95 —2.62 —4.09
(1.50) (1.26) (1.46) (-1.06) (-.49) (-.81)
VDSR —0.77 —1.61 3.97 3.97
(-21) (-.43) (1.27) (1.27)
VINT 22.06%*  25.53%* 9.13 7.39
(2.24) (2.30) (1.10) (.91)
R* (%) —11.71 19.60 28.76 8.21 16.68 25.06
yuxr — EIMKT)] 3.60 —0.04 1.70 —13.61%* —10.29*  —11.76**
(.48) (-.01) (.26) (-2.43) (-1.92) (-2.34)
yivt — E[INT) 9.77 13.25 -3.15 —4.89
(:99) (1.19) (-.38) (-.60)
Joint test of cross-sectional
regression o
12-test (a* = 0) 38.18%* 33.07*  30.65* 69.96%** 65.68%**  64.82%**
(p-value) (.02) (.06) (.08) (.00) (.00) (.00)
Joint test of time-series re-
gression o
F-test (« = 0) 1.49% 2.2]%%*
(p-value) (.06) (.00)
Abnormal return of
CSCAR in the cross-sec-
tion (agge4g) and time-se-
ries (dcscar):
UescAR 5.50%** 6.34%%% 5 3@k
(t-test) (4.95) (5.13) (4.80)
OCSCAR 8.23%kx
(t-test) (4.92)

Estimates of the cross-sectional pricing equation E[R,] = Yo l{nx1y + By using sequentially efficient GMM.
Details about the estimation are in Appendix A.l. MKT is the value-weighted US stock market index, DSR
is the stock market downside risk factor, and INT is the traded intermediary capital risk factor. R? is the model fit
of the cross-sectional pricing equation. y?-test is the joint test statistic of of = Oforalltestassetsi € {1,...,N}.
F-test is the joint test statistic of o; = 0 for all test assets i € {1,..., N}. ¢-statistics are in parentheses below
coefficient estimates, and p-values are below the 7?- and F-test statistics. Errors are estimated taking into account
auto- and cross-sectional correlations and heteroscedasticity according to Newey and West (1987). The data are
our set of 15 developed countries from January 1984 to February 2016.

p< Ly
**p < 0.5;
ek < 01,
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Pricing Implications of Covariances and Spreads in Currency Markets

Table B9
Dollar beta and FX correlation dispersion

Fifteen developed

currencies
25 test assets 11 test assets 36 test assets
Yo 2.01* 2.83%* 1.90%* 1.83* 1.48% % 1.50%**
R (1.96) (2.27) (2.27) (1.99) (3.24) (3.15)
YoorL —2.55 491 —1.26
R (-1.39) (1.77) (-.85)
Year 4.32%* 4.15% 3.95%*
R (2.52) (2.01) (2.48)
VuMLDB 2.67 4.35 2.00
R (1.60) (1.36) (1.26)
YumLe —1.08 -0.91 —0.70
(-.72) (-.25) (-.50)
R (%) _ 14.84 4.92 70.14 68.08 37.36 31.60
Ypor — Epor —4.25%%* 3.22 —2.95%*
R N (2.85) (1.24) (2.56)
Year — Bear —0.91 —1.08 —1.28
R N (1.00) (.70) (1.07)
Vumeos — Buvios —1.21% 0.47 —1.87%*
. . (2.06) (.17) (2.42)
Yumre = Rumre 0.92 1.09 1.30
(1.58) (.32) (1.68)
Joint test of, cross-sectional
regression o = 0:
7> -test 35.27%* 50.71%%%  22.95%%*  D434%kk 6] 27REF T3 QTHkE
(p-value) (.05) (.00) (.01) (.00) (.00) (.00)
Joint test of time-series re-
gression o = 0:
F-test 1.39 2.02%#* 3.5k 334k 1.80%** 2.30%**
(p-value) (.10) (.00) (.00) (.00) (.00) (.00)
Abnormal return of
CSCAR in the cross-sec-
tion (oggc ) and time-se-
ries (dcscar):
0EScAR 5.04%** 5.96%** 5.54%*x 7.06%**
(3.71) (4.04) (3.89) (4.42)
OCSCAR 6.56%** 8.19%** 6.56%%* 8.19%%*
(4.71) (5.04) (4.71) (5.04)

Estimates of the cross-sectional pricing equation E[R;] = yol{nx1y + f7 using sequentially efficient GMM.
Details about the estimation are in Appendix A.1. HMLDB (dollar beta factor) is a long-short strategy based
on currency loadings on the DOL factor, HMLC is a long-short strategy based on currency loadings on the FX
market correlation dispersion. R is the model fit of the cross-sectional pricing equation. y2-test is the joint test

statistic of of = 0 for all test assets i € {1,..., N}. F-test is the joint test statistic of o; = 0 for all test assets
i€ {l,..., N}. t-statistics are in parentheses below coefficient estimates, and p-values are below the y?- and F-

test statistics. Errors are estimated taking into account auto- and cross-sectional correlations and heteroscedas-
ticity according to Newey and West (1987). The data are our set of 15 developed countries from January 1984 to
February 2016.

<1

**p < 0.5;

*HEp < 01

47

Z20z fienuer g1 uo Jasn yoa] eulbiip | ssueliq] Ausieaiun Aq 26052£9/6 L 0geel/msdel/c601L 01 /10p/8lonle-soueape/sdel/woo dno-oiwspese//:sdiy woll papeojumod]



Review of Asset Pricing Studies | v 0 n 0 2021

Table B10
Predictive regressions

A. h = | month

Y, Y, Y; Yy Ys Y Y, Yy
X —0.037*%% —0.003*** 0.341*** 0.280***  0.127 0.226%*  0.143** 0.170*
X5 0.012 —0.000 —0.199 0.120 0.342 —0.580* —0.153 —0.242
X3 0.019**%* 0.002*** —0.105 0.004 —0.285** —0.071 0.016  —0.020
X4 0.000 —0.002**  0.216 0.058 0.401***  (0.247 —0.008 —0.099
X5 0.474%%* 0.013 —-1.307 -1.075 -0.777 0.191 1.266 1.110
Xg 0.905**  0.688*** —2.805 1.233  —2.247 —4.452 5128 4.704
R? (%) 53.48 59.05 3.85 2.22 5.12 1.37 0.05 —0.05
B. h = 6 months

Y Y, Y3 Y, Ys Y Y, Y
X —0.011%**  —0.001 0.141*** 0.132%** —(.021 0.091*%  0.069*** 0.019
X) —0.001 —0.003 —0.187 0.082  0.274* —0.109  —0.099  0.208
X3 0.013%** 0.001 —0.022 -0.018 —0.090* —0.050 —0.015 —0.009
X3 0.009 —0.002 0.094 0.024  0.219** 0.047 0.053  —0.073
Xs 0.307***  —0.013 0.372 0.704 0.479 0.603 —0.451  0.135
Xg 0.935%*  0.564*** 2,107 1.080 2.079 6.749*%  —1.290 8.476%***
R? (%) 34.46 42.52 6.62 2.01 11.87 9.00 2.75 3.74
C. h = 12 months

Y, Y, Y; Yy Y5 Yo Y, Yy
X —0.004 —0.000 0.102*** 0.085***  0.012 0.059*  0.035*  0.041
X5 —0.015 —0.004 —0.121  0.099 0.016  —0.261** —0.053 0.249%**
X3 0.006** —0.000 0.023 0.027 —0.074**  0.011 —0.004  0.009
X4 0.014* —0.002  —0.020 —0.054 0.260*** 0.164** 0.046  —0.089
Xs 0.179%*%*  —0.021* 1.423** 1.177%* 0471 0.056 —0.138  —0.060
Xg 0.936**  0.465%** —0.132 —1.714  2.862  9.660*** —0.206 7.021%**
R? (%) 24.45 35.40 14.36 5.10 20.16 21.47 0.45 9.94
D. h = 18 months

Y, Y, Y; Y, Ys Ys Y, Ys
X —0.002 —0.001 0.082*** 0.063**  0.007  0.058*** 0.019  0.045*
X5 —0.015 —0.003 —0.082 0.165 —0.084 —0.204*** —0.055 0.159%*
X3 0.003 —0.001  0.053* 0.048** —0.048*  0.024 0.006  —0.007
X4 0.010  —0.004*** 0.003 0.008 0.236***  0.110* 0.011  —0.045
X5 0.101*%  —0.023** 1.377** 1.095%** (0.451 0.001 0.114  —0.171
Xg 0.849**  0.369***  0.091 —0.763  2.480  8.421*** 0.442  4.744*
R? (%) 15.45 31.65 19.50 9.52 25.70 27.01 0.11 7.62

Predictive regression Y 4y = Ceonst + Corendl + Z CiXjg + e Yion =7 E Y. at h= 1-, 6-, 12-, and 18-

month horizons. Predicted quantities are global FX market volatility VOL 1111qu1d11y ILL and currency returns
of CSCARcp, CAR, DOL, DDOL, MOM, VAL. That is, Y:
Y1 =VOL;sp, Yo = ILL; 11, Y3 = CSCARCR 1141

Y4 = CAR,V/“,, Y5 = DOL;‘H/“ Y(, = DDOL/YH],, Y7 = MOM,‘H/,, and Yg = VAL,‘/+/7. Predictors XjiXp =
>~ 10i.4|| (notional value of CSCAR), x, = 3, 0;, (total exposure to risky assets of CSCAR), x3 = >, ||0i,
—0;,-1|| (turnover of CSCAR), x4 = sign(median{fd;,}) (sign of median forward discount across all curren-
cies), xs = VOL, (global FX market volatility), x¢ = ILL, (global FX market illiquidity). R> (adjusted) in
percentage measures the regression fit. The data are our set of 15 developed from January 1984 to February
2016. Standard errors are calculated using Newey and West (1987) to account for heteroscedasticity and
autocorrelation.

<l

**p < 0.5

*Ep < 01
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C. Figures
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Figure C1

Single-factor CSCAR model fit: Developed currencies

This figure compares historical average returns and expected returns according to the single-factor CSCAR
model, where we use the average return of CSCAR as the factor premium. IntP, MomP, ValP, DB, and FXCB
denote, respectively, the test assets that are portfolios sorted on forward discounts, past currency returns, real
exchange rates against the USD, the dollar factor, and the FX correlation dispersion. DDOL is the dynamic
dollar factor, and CARP refers to the 10 optimized carry portfolios: CARV M, SCAR, NSCAR, NSCARV M,
SCARCYV, VSCAR, CECAR, CSCAR, CSCARCR, and CSCARCYV. The data are our set of 15 developed
currencies.
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Figure C2

Single-factor CSCAR model fit: All currencies
This figure compares historical average returns and expected returns according to the single-facto

r CSCAR

model, where we use the average return of CSCAR as the factor premium. IntP, MomP, ValP, DB, and FXCB
denote, respectively, the test assets that are portfolios sorted on forward discounts, past currency returns, real
exchange rates against the USD, the dollar factor, and the FX correlation dispersion. DDOL is the dynamic
dollar factor, and CARP refers to the 10 optimized carry portfolios: CARV M, SCAR, NSCAR, NSCARV M,

SCARCYV, VSCAR, CECAR, CSCAR, CSCARCR, and CSCARCYV. The data are our set of 29
and emerging currencies.

50

developed

220z fienuer g1 uo Jasn yoa] eulbiip | ssueiq] Ausisaiun Aq 26052£9/6 L 0geel/msdel/c601L 01 /10p/aonle-soueape/sdel/woo dno oliwepese//:sdiy woll pepeojumod



Pricing Implications of Covariances and Spreads in Currency Markets

0.15
(7]
= >
2 04 > ]
>
g » "
g | <o »>
g 005 AntP
f > v MomP
8 \/ 4 ValP
= DB
,3 oF v > FXCB | 1
T < DDOL
» CARP
_450
-0.05 : ‘ :
-0.05 0 0.05 0.1 0.15
Expected Returns by Model
Figure C3

DOL-CAR factor model fit: Developed currencies

This figure compares historical average returns and expected returns according to the DOL-CAR factor model,
where we use the average return of DOL-CAR as the factor premium. IntP, MomP, ValP, DB, and FXCB
denote, respectively, the test assets that are portfolios sorted on forward discounts, past currency returns, real
exchange rates against the USD, the dollar factor, and the FX correlation dispersion. DDOL is the dynamic
dollar factor, and CARP refers to the 10 optimized carry portfolios: CARV M, SCAR, NSCAR, NSCARV M,
SCARCYV, VSCAR, CECAR, CSCAR, CSCARCR, and CSCARCYV. The data are our set of 15 developed
currencies.
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